Diagnosis of Supersymmetry Breaking Mediation Schemes by Mass Reconstruction at the LHC

Bhaskar Dutta1, Teruki Kamon1,2, Abram Krislock1,3, Kuver Sinha1, Kechen Wang1

1Department of Physics & Astronomy, Mitchell Institute for Fundamental Physics, Texas A&M University

2Department of Physics, Kyungpook National University

3Department of Physics, AlbaNova, Stockholm University

Spaatind 2012 - Nordic Conference on Particle Physics
Outline

1. SUSY and SUSY Breaking at LHC
 - Motivation
 - Kinematic Observables @ LHC

2. Results
 - Diagnosis of SUSY Breaking Mediation
 - Additional Result: Third Generation Squarks
Supersymmetry Flash Review

SM fermions

<table>
<thead>
<tr>
<th>Quarks</th>
<th>SUSY bosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>\tilde{u}</td>
</tr>
<tr>
<td>c</td>
<td>\tilde{c}</td>
</tr>
<tr>
<td>t</td>
<td>\tilde{t}</td>
</tr>
<tr>
<td>d</td>
<td>\tilde{d}</td>
</tr>
<tr>
<td>s</td>
<td>\tilde{s}</td>
</tr>
<tr>
<td>b</td>
<td>\tilde{b}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leptons</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>\tilde{e}</td>
</tr>
<tr>
<td>μ</td>
<td>$\tilde{\mu}$</td>
</tr>
<tr>
<td>τ</td>
<td>$\tilde{\tau}$</td>
</tr>
<tr>
<td>ν_e</td>
<td>$\tilde{\nu_e}$</td>
</tr>
<tr>
<td>ν_μ</td>
<td>$\tilde{\nu_\mu}$</td>
</tr>
<tr>
<td>ν_τ</td>
<td>$\tilde{\nu_\tau}$</td>
</tr>
</tbody>
</table>

SM (gauge) bosons

<table>
<thead>
<tr>
<th>SUSY gauginos</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
</tr>
<tr>
<td>W^\pm</td>
</tr>
<tr>
<td>Z^0</td>
</tr>
<tr>
<td>h_1^0</td>
</tr>
<tr>
<td>h_2^0</td>
</tr>
<tr>
<td>h_1^+</td>
</tr>
<tr>
<td>h_2^-</td>
</tr>
</tbody>
</table>
SUSY and SUSY Breaking at LHC
Results
Motivation
Kinematic Observables @ LHC

SUSY Breaking

SUSY breaking schemes for gaugino masses

- M_a / g_a does not run at one loop in MSSM.
- Tree-level gauge-kinetic dominant + universal
 \Rightarrow mSUGRA $\rightarrow M_1 : M_2 : M_3 \simeq 1 : 2 : 6$
- One-loop conformal anomaly dominant
 \Rightarrow Anomaly $\rightarrow M_1 : M_2 : M_3 \simeq 3.3 : 1 : 9$
- Mirage mediation: a mix of mSUGRA and anomaly
 \[
 \frac{M_a(\mu)}{g_a^2(\mu)} = \left(1 + \frac{\ln(M_p/m_3/2)}{16\pi^2} g_{GUT}^2 b_\alpha \right) \frac{M_0}{g_{GUT}^2}
 \]
 $\Rightarrow M_1 : M_2 : M_3 \simeq (1 + 0.66\alpha) : (2 + 0.2\alpha) : (6 - 1.8\alpha)$

All we must do is find the gaugino masses!
We choose some benchmarks and demonstrate using
ISASUGRA, PYTHIA, and PGS4.
Dominant production at LHC is $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, or $\tilde{q}\tilde{q}$

\[\tilde{q}_L \rightarrow q \]

\[\tilde{\chi}_2^0 \rightarrow \tau^\mp \]

\[\tilde{\tau}_1^\pm \rightarrow \tau^\pm \]

\[\tilde{\chi}_1^0 \quad E_T \]
Making use of Opposite Sign (OS) – Like Sign (LS) subtraction:

\[\tilde{q}_L \rightarrow q \]
\[\tilde{\chi}_2^0 \rightarrow \tau^{\mp} \]
\[\tilde{\tau}_1^{\pm} \rightarrow \tau^{\pm} \]
\[\tau^{\pm} \]

\[M_{\tau\tau}^{\mathrm{OS}} - M_{\tau\tau}^{\mathrm{LS}} = M_{\tau\tau}^{\mathrm{OS}} - M_{\tau\tau}^{\mathrm{LS}} \]
Making use of Opposite Sign (OS) – Like Sign (LS) subtraction:

\[\tilde{q}_L \rightarrow q \]

\[\tilde{\chi}_2^0 \rightarrow \tau^\mp \]

\[\tilde{\tau}_1^\pm \rightarrow \tau^\pm \]

\[\tau^\pm \rightarrow \tilde{\chi}_1^0 \]

\[M_{\tau\tau}^{\text{OS}} - M_{\tau\tau}^{\text{LS}} = \text{Background OS} \]
Making use of Opposite Sign (OS) – Like Sign (LS) subtraction:

\[\tilde{q}_L \rightarrow q \]

\[\tilde{\chi}_2^0 \rightarrow \tau^{\mp} \]

\[\tilde{\tau}_1^{\pm} \rightarrow \tau^{\pm} \]

\[\tau^{\pm} \]

\[\tilde{\chi}_1^0 \]

\[M^{\text{OS}}_{\tau\tau} - M^{\text{LS}}_{\tau\tau} \]
Making use of Opposite Sign (OS) – Like Sign (LS) subtraction:

\[
\begin{align*}
\tilde{q}_L & \rightarrow q \\
\tilde{\chi}_2^0 & \rightarrow \tau^{\mp} \\
\tilde{\tau}_1^{\pm} & \rightarrow \tau^{\pm} \\
\tau^{\pm} & \rightarrow \tilde{\chi}_1^0
\end{align*}
\]

\[
M_{\tau\tau}^{\text{OS}} - M_{\tau\tau}^{\text{LS}} = M_{\tau\tau}^{\text{OS-LS}}
\]
Ditau Invariant Mass

Counts / 5 GeV

M_{\tau\tau} (GeV)

M_{\tau\tau}^{OS}

M_{\tau\tau}^{LS}

M_{\tau\tau}^{OS-LS}
\[\tau \rho_T \] variables

\[\rho_{T,\text{AM}} \equiv \frac{1}{2} (\text{slope}(\rho_{T,\text{high}}) + \text{slope}(\rho_{T,\text{low}})) \]

\[\rho_{T,\text{diff}} \equiv \frac{1}{2} (\text{slope}(\rho_{T,\text{high}}) - \text{slope}(\rho_{T,\text{low}})) \]
Making use of BEST:

\[\tilde{q}_L \rightarrow q \]

\[\tilde{\chi}_2^0 \rightarrow \tau^\pm \]

\[\tilde{\tau}_1^\pm \rightarrow \tau^\pm \]

\[q \]

\[\tilde{\chi}_1^0 \]

\[M_{j\tau\tau}^{\text{Same}} \]
Making use of BEST:

\[\tilde{q}_L \rightarrow q \]

\[\tilde{\chi}_2^0 \rightarrow \tau^{\mp} \]

\[\tilde{\tau}_1^{\pm} \rightarrow \tau^{\pm} \]

\[q \rightarrow \tilde{\chi}_1^0 \]

\[M^\text{Same}_{jj\tau\tau} \quad M^\text{Bi}_{jj\tau\tau} \]
Making use of BEST:

\[\tilde{q}_L \rightarrow q \]

\[\tilde{\chi}^0_2 \rightarrow \tau^\pm \]

\[\tilde{\tau}^\pm_1 \rightarrow \tau^\pm \]

\[q \rightarrow \tilde{\chi}^0_1 \]

\[M^{\text{Same}}_{j\tau\tau} - N_{\text{BEST}} M^{\text{Bi}}_{j\tau\tau} = M^{\text{BEST}}_{j\tau\tau} \]

Bi-Event

\[q \quad q \quad q \]

BEST

Eats BG
Jet + Ditau Invariant Mass

Counts / 50 GeV

M_{\text{same } j\tau\tau}
M_{\text{bi } j\tau\tau}
M_{\text{BEST } j\tau\tau}

M_{j\tau\tau} (GeV)

Abram Krislock January 4 Spaatind 2012 Diagnosis of SUSY Breaking Schemes at LHC
4 Jets + \not{E}_T Signal

Dominant production at LHC is $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, or $\tilde{q}\tilde{q}$

\[
\begin{align*}
\tilde{g} &\rightarrow q & &\text{Soft Jet} \\
\tilde{q}_R &\rightarrow q & &\text{Hard Jet} \\
\tilde{\chi}^0 & & &\not{E}_T \\
\tilde{\chi}_1 & & &
\end{align*}
\]

\[
M_{\text{eff}} \equiv \sum_{i=1}^{4} (p_{T,\text{jet } i}) + \not{E}_T
\]
Goal: Gaugino Masses

Equations to solve

\[M_{\tau\tau}^{\text{end}} = f_1(m_{\tilde{\chi}^0_2}, m_{\tilde{\tau}_1}, m_{\tilde{\chi}^0_1}) \]
\[p_{T,AM} = f_2(m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1}) \]
\[p_{T,diff} = f_3(m_{\tilde{\chi}^0_2}, m_{\tilde{\tau}_1}, m_{\tilde{\chi}^0_1}) \]
\[M_{j\tau\tau}^{\text{end}} = f_4(m_{\tilde{q}_L}, m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1}) \]
\[M_{\text{peak}}^{\text{eff}} = f_5(m_{\tilde{q}}, m_{\tilde{g}}) \]

- Find f’s using MC simulation.
- Measure observables.
- Invert and solve for masses.
Result: Mirage Scale

The graph shows the relationship between the logarithm of the mu parameter ($\log(\frac{\mu}{\text{GeV}})$) and the mass of the Higgs boson (H_{GeV}) and the L mass (L_{GeV}). The lines and shaded regions indicate the range of values for different SUSY breaking schemes at the LHC.
4 Jets (at least one b-Jet) + E_T Signal

Decay Chain:

$\tilde{g} \rightarrow b$

$\tilde{b}_1 \rightarrow W$

$\tilde{t}_1 \rightarrow c$

$\tilde{\chi}_0^1$
Decay Chain:

\[\tilde{g} \rightarrow b \]

\[\tilde{b}_1 \rightarrow W \]

\[\tilde{t}_1 \rightarrow c \]

\[\tilde{\chi}_1^0 \]

\[M_{bW}^{\text{end}} \]
4 Jets (at least one b-Jet) + \not{E}_T Signal

Decay Chain:

$\tilde{g} \rightarrow b$

$\tilde{b}_1 \rightarrow W$

$\tilde{t}_1 \rightarrow c$

$\tilde{\chi}_1^0$

M_{bw}^{end}

M_{jW}^{end}
Results

Diagnosis of SUSY Breaking Mediation

Additional Result: Third Generation Squarks

M_{bW}^{end} and M_{jW}^{end}

![Histograms of M_{bW} and M_{jW}]

- M_{bW}^{same}
- M_{bW}^{bi}
- M_{bW}^{BEST}

- M_{jW}^{same}
- M_{jW}^{bi}
- M_{jW}^{BEST}
Way too many results for one talk!!

arXiv:1112.3966

- Gaugino masses for multiple benchmark points. ⇒ SUSY Breaking Mechanism.
- Third generation Squark masses.
- Relic Density of Dark Matter from Model Parameters. (DarkSUSY)

Thanks for your attention!!