The Bi-Event Subtraction Technique (BEST) for Hadron Colliders

Bhaskar Dutta1 Teruki Kamon1,3 Nikolay Kolev2
Abram Krislock1

1Texas A&M University
2University of Regina
3Kyungpook National University

2011 Phenomenology Symposium

arXiv:1104.2508
Outline

1. Combinatoric Background at Colliders
 - Standard Model @ Large Hadron Collider
 - Beyond SM @ LHC Example: SUSY

2. Bi-Event Subtraction Technique
 - BEST Explained
 - BEST does $t\bar{t}$
 - BEST does SUSY

3. Conclusions
Outline

1. Combinatoric Background at Colliders
 - Standard Model @ Large Hadron Collider
 - Beyond SM @ LHC Example: SUSY

2. Bi-Event Subtraction Technique
 - BEST Explained
 - BEST does $t\bar{t}$
 - BEST does SUSY

3. Conclusions
Outline

1. Combinatoric Background at Colliders
 - Standard Model @ Large Hadron Collider
 - Beyond SM @ LHC Example: SUSY

2. Bi-Event Subtraction Technique
 - BEST Explained
 - BEST does $t\bar{t}$
 - BEST does SUSY

3. Conclusions
Standard Model of Particle Physics

Standard Model (SM) Particles

- Explains matter and interactions on our planet.
- Higgs yet to be found.
- Mostly understood. ⇒ Room for improvement!
- Beyond SM needed for dark matter, dark energy, inflation...

Higgs yet to be found.
Mostly understood. ⇒ Room for improvement!
Beyond SM needed for dark matter, dark energy, inflation...
Standard Model of Particle Physics

Standard Model (SM) Particles

<table>
<thead>
<tr>
<th>(u_L)</th>
<th>(u_R)</th>
<th>(e_L)</th>
<th>(e_R)</th>
<th>(\nu_e)</th>
<th>(\nu_{eL})</th>
<th>(\nu_{eR})</th>
<th>(\mu_L)</th>
<th>(\mu_R)</th>
<th>(\tau_L)</th>
<th>(\tau_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_L)</td>
<td>(d_R)</td>
<td>(\nu_e)</td>
<td>(\nu_{eL})</td>
<td>(\nu_{eR})</td>
<td>(\mu_L)</td>
<td>(\mu_R)</td>
<td>(\tau_L)</td>
<td>(\tau_R)</td>
<td>(W^+)</td>
<td>(W^-)</td>
</tr>
</tbody>
</table>

- Explains matter and interactions on our planet.
- Higgs yet to be found.
- Mostly understood. ⇒ Room for improvement!
- Beyond SM needed for dark matter, dark energy, inflation...
Standard Model of Particle Physics

Standard Model (SM) Particles

(u)_{L}	u_{R}	(e)_{L}	e_{R}
(d)_{L}	d_{R}	(\nu_{e})_{L}	\nu_{e}
(c)_{L}	c_{R}	(\mu)_{L}	\mu_{R}
(s)_{L}	s_{R}	(\tau)_{L}	\tau_{R}
(t)_{L}	t_{R}	(\nu_{\tau})_{L}	h^{0}
(b)_{L}	b_{R}	(W^{+})	Z^{0}

- Explains matter and interactions on our planet.
- Higgs yet to be found.
- Mostly understood. ⇒ Room for improvement!
- Beyond SM needed for dark matter, dark energy, inflation...
Standard Model of Particle Physics

Standard Model (SM) Particles

<table>
<thead>
<tr>
<th>(u)</th>
<th>u_R</th>
<th>e_L</th>
<th>e_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>d_R</td>
<td>\nu_e</td>
<td>\nu_e</td>
</tr>
<tr>
<td>(c)</td>
<td>c_R</td>
<td>\mu_L</td>
<td>\mu_R</td>
</tr>
<tr>
<td>(s)</td>
<td>s_R</td>
<td>\nu_\mu</td>
<td>\nu_\mu</td>
</tr>
<tr>
<td>(t)</td>
<td>t_R</td>
<td>\tau_L</td>
<td>\tau_R</td>
</tr>
<tr>
<td>(b)</td>
<td>b_R</td>
<td>\nu_\tau</td>
<td>\nu_\tau</td>
</tr>
</tbody>
</table>

- Explains matter and interactions on our planet.
- Higgs yet to be found.
- Mostly understood. ⇒ Room for improvement!
- Beyond SM needed for dark matter, dark energy, inflation...
Standard Model of Particle Physics

Standard Model (SM) Particles

<table>
<thead>
<tr>
<th>(u)</th>
<th>(d)</th>
<th>(e)</th>
<th>(νe)</th>
<th>(νμ)</th>
<th>(ντ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>u_R</td>
<td>d_R</td>
<td>e_R</td>
<td>μ_R</td>
<td>τ_R</td>
<td>g</td>
</tr>
<tr>
<td>c_R</td>
<td>s_R</td>
<td>c_R</td>
<td>c_R</td>
<td>c_R</td>
<td>c_R</td>
</tr>
<tr>
<td>t_R</td>
<td>b_R</td>
<td>t_R</td>
<td>b_R</td>
<td>b_R</td>
<td>b_R</td>
</tr>
</tbody>
</table>

- Explains matter and interactions on our planet.
- Higgs yet to be found.
- Mostly understood. ⇒ Room for improvement!
- Beyond SM needed for dark matter, dark energy, inflation...

Standard Model @ Large Hadron Collider

Beyond SM @ LHC Example: SUSY
Combinatoric Background at Colliders
Bi-Event Subtraction Technique
Conclusions

Large Hadron Collider

Hadron Colliders
- Standard Model
- Beyond the Standard Model
 - ex. Supersymmetry

$\ell, W^+, W^-, t, \bar{t}, b, \bar{b}$

Abram Krislock
BEST 4/10
Large Hadron Collider

Hadron Colliders
- Standard Model
- Beyond the Standard Model
 - ex. Supersymmetry

\[q \rightarrow W^+ \rightarrow t \rightarrow b \]

\[q \rightarrow W^- \rightarrow t \rightarrow \bar{b} \]

Abram Krislock
Large Hadron Collider

Hadron Colliders
- Standard Model
- Beyond the Standard Model
 - ex. Supersymmetry

Combinatoric Background at Colliders
Bi-Event Subtraction Technique
Conclusions

Standard Model @ Large Hadron Collider
Beyond SM @ LHC Example: SUSY
Large Hadron Collider

Hadron Colliders
- Standard Model
- Beyond the Standard Model
 - ex. Supersymmetry

$q \leftrightarrow W^+ \leftrightarrow t \rightarrow b$
$q \leftrightarrow W^- \leftrightarrow \ell \rightarrow \nu$

Abram Krislock
SUSY at the LHC Dilemma...
SUSY at the LHC Dilemma...
SUSY at the LHC Dilemna...
SUSY at the LHC Dilemna...
SUSY at the LHC Dilemma...
SUSY at the LHC Dilemna...

\[\tilde{q} \rightarrow j_1, q, \tilde{\chi}^0_2 \]
\[\tilde{\tau}^\pm_1, \tau^\pm \]
\[E_T \]

\[p \rightarrow \tilde{g} \rightarrow j_3, q, \tilde{\chi}^\pm_1 \]
\[\tilde{\chi}^0_1 \rightarrow W^+ \rightarrow j_4, q, j_5 \]
Bi-Event Subtraction Technique (BEST)

Event \#n

j

(W)

j

j
Bi-Event Subtraction Technique (BEST)

Event \#n

\[
\begin{pmatrix}
\text{(W)} \\
n_j
\end{pmatrix} \\
m_{jj}^{\text{same}}
\]

\[
\begin{pmatrix}
\text{j} \\
n_j
\end{pmatrix}
\]
Bi-Event Subtraction Technique (BEST)

Event \#n-1

Event \#n

\[j \]

\[(W) \]

\[m_{jj}^{\text{same}} \]

\[m_{jj}^{\text{bi}} \]
Bi-Event Subtraction Technique (BEST)

Event #n-1

\[j \]

\[j \]

\[j \]

\[m_{jj}^{bi} \]

\[j \]

Event #n

\(\{ j \} \)

\[(W) \]

\(m_{jj}^{same} \)

\[j \]

\[j \]

\[j \]
What BEST Looks Like...
What BEST Looks Like...

![Graph 1](counts_same)

![Graph 2](counts_bi)

m_{jj}^{\text{same}} (GeV)

Counts / 5 GeV

m_{jj}^{\text{bi}} (GeV)

Counts / 5 GeV

Normalization
What BEST Looks Like...

- \(m_{jj}^{\text{same}} \) (GeV)
- \(m_{jj}^{\text{bi}} \) (GeV)
- \(m_{jj}^{\text{BEST}} \) (GeV)
t Reconstruction with BEST

Even with backgrounds, BEST triumphs.

- 7 TeV collision energy @ LHC, 2 fb⁻¹.
- ALPGEN - $t\bar{t}$ signal and W+jets background
- PYTHIA - shower
- PGS - detector

$$m_W = 81.11 \pm 0.32 \text{ GeV}$$

$$m_t = 170.5 \pm 1.5 \text{ GeV}$$
Even with backgrounds, BEST triumphs.

- 7 TeV collision energy @ LHC, 2 fb$^{-1}$.
- ALPGEN - $t\bar{t}$ signal and W+jets background
- PYTHIA - shower
- PGS - detector

$m_W = 81.11 \pm 0.32$ GeV

$m_t = 170.5 \pm 1.5$ GeV
Even with backgrounds, BEST triumphs.

- 7 TeV collision energy @ LHC, 2 fb\(^{-1}\).
- ALPGEN - \(t\bar{t}\) signal and \(W+\)jets background
- PYTHIA - shower
- PGS - detector

\[
m_W = 81.11 \pm 0.32 \text{ GeV}
\]
\[
m_t = 170.5 \pm 1.5 \text{ GeV}
\]
Even with backgrounds, BEST triumphs.

- 7 TeV collision energy @ LHC, 2 fb\(^{-1}\).
- ALPGEN - \(t\bar{t}\) signal and \(W+\)jets background
- PYTHIA - shower
- PGS - detector

\[m_W = 81.11 \pm 0.32 \text{ GeV} \]
\[m_t = 170.5 \pm 1.5 \text{ GeV} \]
Even with backgrounds, BEST triumphs.

- 7 TeV collision energy @ LHC, 2 fb\(^{-1}\).
- ALPGEN - \(t\bar{t}\) signal and \(W+\text{jets}\) background
- PYTHIA - shower
- PGS - detector

\[
m_W = 81.11 \pm 0.32 \text{ GeV}
\]

\[
m_t = 170.5 \pm 1.5 \text{ GeV}
\]
Combinatoric Background at Colliders
Bi-Event Subtraction Technique
Conclusions
BEST Explained
BEST does $\bar{t}t$
BEST does SUSY

Endpoint Techniques with BEST

Even with backgrounds on top of SUSY, BEST triumphs.

- 14 TeV collision energy @ LHC, 100 fb$^{-1}$.
- nuSUGRA: $m_0 = 360$ GeV, $m_{1/2} = 500$ GeV, $\tan \beta = 40$, $A_0 = 0$, and $m_H = 732$ GeV.
- SM: $\bar{t}t$, $W+$Jets, and $Z+$Jets.
Endpoint Techniques with BEST

Even with backgrounds on top of SUSY, BEST triumphs.

- 14 TeV collision energy @ LHC, 100 fb$^{-1}$.
- nuSUGRA: $m_0 = 360$ GeV, $m_{1/2} = 500$ GeV, $	an \beta = 40$, $A_0 = 0$, and $m_H = 732$ GeV.
- SM: $t\bar{t}$, $W+$Jets, and $Z+$Jets.

$\text{Counts / } 5 \text{ GeV}$

$\text{Counts / } 50 \text{ GeV}$

m_{jj}^{same}, m_{jj}^{bi}, m_{jj}^{BEST}

m_{jj} (GeV)

m_{jj} (GeV)

$m^{\text{max}}_{jW} = 769 \pm 18 \text{ GeV}$
Even with backgrounds on top of SUSY, BEST triumphs.

- 14 TeV collision energy @ LHC, 100 fb$^{-1}$.
- nuSUGRA: $m_0 = 360$ GeV, $m_{1/2} = 500$ GeV, \(\tan \beta = 40 \), $A_0 = 0$, and $m_H = 732$ GeV.
- SM: $\bar{t}t$, $W+$Jets, and $Z+$Jets.

\[m_{jW}^{\text{max}} = 769 \pm 18 \text{ GeV} \]
Even with backgrounds on top of SUSY, BEST triumphs.

- 14 TeV collision energy @ LHC, 100 fb$^{-1}$.
- nuSUGRA: $m_0 = 360$ GeV, $m_{1/2} = 500$ GeV, $\tan \beta = 40$, $A_0 = 0$, and $m_H = 732$ GeV.
- SM: $t\bar{t}$, $W+$Jets, and $Z+$Jets.

$$m_{WW}^{\text{max}} = 769 \pm 18 \text{ GeV}$$
The Power of BEST

- Removes combinatoric background of jets.
- Useful without charge or flavor.
- Can help to uncover nearly invisible signals.
- Useful for any hadron collision experiment.

arXiv:1104.2508
Also see:

Thank you for your BEST attention!
The Power of BEST

- Removes combinatoric background of jets.
- Useful without charge or flavor.
- Can help to uncover nearly invisible signals.
- Useful for any hadron collision experiment.

arXiv:1104.2508

Also see:

Thank you for your BEST attention!
The Power of BEST

- Removes combinatoric background of jets.
- Useful without charge or flavor.
- Can help to uncover nearly invisible signals.
- Useful for any hadron collision experiment.

arXiv:1104.2508
Also see:

Thank you for your BEST attention!
The Power of BEST

- Removes combinatoric background of jets.
- Useful without charge or flavor.
- Can help to uncover nearly invisible signals.
- Useful for any hadron collision experiment.

arXiv:1104.2508

Also see:

Thank you for your BEST attention!
The Power of BEST

- Removes combinatoric background of jets.
- Useful without charge or flavor.
- Can help to uncover nearly invisible signals.
- Useful for any hadron collision experiment.

arXiv:1104.2508

Also see:

Thank you for your BEST attention!
The Power of BEST

- Removes combinatoric background of jets.
- Useful without charge or flavor.
- Can help to uncover nearly invisible signals.
- Useful for any hadron collision experiment.

arXiv:1104.2508
Also see:

Thank you for your BEST attention!
Backup Slide: Huge W finding plot for SUSY.
Sideband Subtraction

\[N_{SB} = \frac{\int_{m_{jj}^{\text{band}}} f(m_{jj}) \, dm_{jj}}{\int_{m_{jj}^{\text{sideband}}} m_{jj} \, dm_{jj}} \Rightarrow m_{jj}^{\text{Sub}} = m_{jj}^{\text{W band}} - N m_{jj}^{\text{sideband}} \]
Backup Slide: Sideband Subtraction

Sideband Subtraction

\[N_{SB} = \frac{\int_{W_{band}} f(m_{jj}) dm_{jj}}{\int_{sideband} m_{jj} dm_{jj}} \Rightarrow m_{jj}^{Sub} = m_{jj}^{W_{band}} - N m_{jj}^{sideband} \]
Backup Slide: Sideband Subtraction

\[N_{SB} = \frac{\int_{W\text{ band}} f(m_{jj}) \, dm_{jj}}{\int_{\text{sideband}} m_{jj} \, dm_{jj}} \Rightarrow m_{jj}^{\text{Sub}} = m_{jj}^{W\text{ band}} - N_{SB} m_{jj}^{\text{sideband}} \]