LHC: A New Era Has Just Started

Alexei Safonov
Outline

• Particle Physics introduction and some history
• Large Hadron Collider (LHC) Project
• CMS Experiment and Collaboration:
 • Detector Layout and Subsystems
 • Discovery Potential
 • Doing physics analyses at colliders
 • Role of Texas A&M in the CMS project
• Summary
Particle Discoveries

- Radioactive materials and cosmic ray era:
 - Discoveries:
 - Electron (1890s), photon (1905) and nucleus (1909)
 - Proton (1919)
 - Neutrino prop. (1930), neutron (1931), positron (1932)
 - Muon (1937-1947), light mesons (1947+)
 - Status: A lot of knowledge, but things look pretty chaotic, it was clear that the picture is incomplete

- Accelerators era:
 - Streak of discoveries:
 - 1983 – Z/W, 1989 - 3 types of light neutrinos
 - 1995 – top quark (Tevatron)
 - End of 20th century: Standard Model as we know it largely complete except for Higgs boson
 - Important precision measurements mostly confirm SM, but no major discoveries
Standard Model in Pre-LHC Era

- And then in the last decade we have been witnessing mounting problems
 - Feeling of imminent changes just like before the start of accelerator era
- Particle physics got stuck with a number of problems that cannot be explained with existing data
 - Higgs boson has not been seen in spite of less and less room left for it
 - Precision data shows signs of inconsistencies
 - We know Dark Matter is there, but haven’t seen it directly
 - Discovery of neutrino oscillations has already delivered a strong punch in the face of Standard Model
Tevatron: 20 Years Later...

• Tevatron discovered top, but failed to do much more even though we got 50 times more data since top

• Why? Apparently we did not get high enough in energy
 • All the fun stuff must be happening at a bit higher energies

• LHC: next large step
 • Many reasons why we should get it this time
Large Hadron Collider

27 km in Circumference!

One of the largest and the most complex scientific instrument ever conceived & built by humankind

E-beam = 7 TeV

CMS

ALICE

ATLAS

LHCb
Collisions at LHC

14 000 x mass of proton (14 TeV) = Collision Energy
Protons fly at 99.999999% of speed of light
2808 = Bunches/Beam
100 billion (10^{11}) = Protons/Bunch

7 TeV Proton Proton colliding beams

Bunch Crossing 40 million (10^6) Hz

Proton Collisions 1 billion (10^9) Hz

Parton Collisions

New Particles 1 Hz to 10 micro (10^{-5}) Hz (Higgs, SUSY,)

One “discovery” event in 10,000,000,000,000
Our goal is to find that one event!
“Largest Science Project Ever”

- Circular 27 km long tunnel
 - 50 - 175 meters underground
 - 2 beam pipes, 8 sectors
- Enormous and very sophisticated magnetic system:
 - 1,232 superconducting dipole magnets keep protons in the orbit
 - $B = 0.5 \text{ – } 8.3 \text{ T}$ as protons accelerate from 450 GeV to 7 TeV
 - 392 superconducting quadrupole magnets to focus beams
 - Every magnet in sync with all others to keep the beam running
 - Total magnetic energy stored is that of Aerobus A380 flying at 700 km/h
- Largest “refrigerator” in the world:
 - 40,000 tons of cold mass spread over 27 km
 - 10,000 tons of Liquid Nitrogen (at $T=80\text{ K}$)
 - 60 tons of Liquid Helium (cools ring to final 1.9 K)
“One short trip for a proton, but one giant leap for mankind!”

• On September 10 2008 at 10:28 AM Geneva time (3:28 AM in College Station), the new era in science has started as LHC had its first beam circulated the full orbit.

• Result of hard work of a global collaboration of scientists, universities and governments.
 • Over 10,000 scientists from 500 institutions from 60 countries!
LHC: Long Way to Get to Here

- B.L.H.C era:
 - October 1995 – TDR published, production starts
 - November 2000 – first magnets arrived
 - May 2005 – connecting magnets
 - October 2006 – cryogenic system is completed
 - November 2006 – last magnet arrived
 - November 2007 – the whole infrastructure in place (but not enough helium)
 - August 2008 – all 8 sectors of the ring are finally cooled down

- Startup:
 - September 10, 2008 – first beams circulated in both directions
 - September 12, 2008 – the LHC was able to keep beam running for 30 minutes

- Before end of 2008:
 - Beam comissionning and optics measurements with 450 GeV beam
 - Short collisions with 450 GeV (possibly even this weekend)
 - Ramping up beam energy to 5 TeV per beam
 - Intensity and squeezing studies
 - **Collisions at 10 TeV (end of October?)**
 - Detectors collect ~10 ipb of data
 - Winter shutdown: train quadrupoles to full current (for 7 TeV)

- 2009 and after:
 - Nominal 14 TeV collisions
 - Likely 1-2 ifb of data in 2009, more in future years
 - **2013-2018: increasing beam intensity by an order of magnitude**
LHC Experiments:

- CMS and ATLAS:
 - “General purpose” detectors
 - Search for Higgs and new physics
 - Different detectors technologies and techniques to allow cross-checks of results
 - Known to be important

- ALICE: quark-gluon plasma studies
 - Special dedicated LHC runs with lead ion collisions instead of protons

- LHCb: studies CP violation in b-sector
 - Precision measurements of B-meson decays may explain the matter-anti-matter asymmetry
CMS Sub-Detectors

- **SUPERCONDUCTING COIL**
- **CALORIMETERS**
 - ECAL: Scintillating PbWO₄ Crystals
 - HCAL: Plastic scintillator copper sandwich
 - Overall length: 21.6 m
 - Magnetic field: 4 Tesla

- **IRON YOKE**
- **TRACKERs**
 - Silicon Microstrips
 - Pixels
 - Cathode Strip Chambers
 - Resistive Plate Chambers
 - Drift Tube Chambers

- **MUON ENDCAPS**
 - Resistive Plate Chambers
 - Cathode Strip Chambers

Each layer identifies and enables the measurement of the momentum (P) or energy (E) of particles produced in a collision.

- Total weight: 12,500 t
- Overall diameter: 15 m
- Overall length: 21.6 m
CMS: Construction

- **1992: Letter of Intent**
 - Four US Universities:
 - UT Dallas, UC Davis, UCLA, UC Riverside
- **1994: Technical Proposal**
 - Approval signaled official start of building the detector
 - 35 US Institutions
- **CMS Detector Construction:**
 - Actually started in ~1998, distributed over many countries and institutions
 - Daunting logistics
 - Detector assembled on surface in large chunks, then lowered into the cavern (2006)
- **Many challenges on the way:**
 - E.g. when boring the CMS shaft, an underground river had to be frozen with liquid nitrogen
CMS Collaboration

• International collaboration of scientists runs the experiment:
 • 2k researchers from 155 institutions from ~37 countries
 • With a recent wave of newcomers, now 49 US Universities

• Stunning logistics task!
 • Elaborate structure of managing tasks and responsibilities
 • University groups take responsibilities for specific tasks and analyses
 • Elected and designated coordinators of super-tasks

• TAMU is a CMS member:
 • TAMU group expanded to 12 people (3 senior faculty scientists)
CMS: Physics Potential

- CMS Physics Potential:
 - Higgs boson (“God’s particle”)
 - or another mechanism of electroweak symmetry breaking
 - Supersymmetry
 - May hold keys to explaining Dark Matter
 - Shed light on unification of forces (strong and EW)
 - Extra Space Dimensions and Graviton (inspired by string theory)
 - Finding the unexpected:
 - Arguably the most likely outcome
 - ...and the most exciting too!
Higgs: Why Do We Need It?

• Proposed to explain masses of bosons:
 • In good renormalizable theories bosons must be massless
 • LEP collider has directly measured masses of W and Z and they are ~100 GeV, so they are hardly zero!
 • Higgs potential resolves that and gives masses to particles
 • As a result, the world around us is not symmetrical, but the theory explaining it is
 • Sounds like a trick?

• Many reasons why this is likely not the full story:
 • Large divergences in taking SM towards Plank scale (hierarchy problem)
 • EWSB potential comes completely out of the blue, no explanation...

Nice illustration from Gordy K.:
Symmetrical equation:
 • $x+y=4$
Solutions (x,y):
 • Symmetrical: $(2, 2)$
 • And asymmetrical: $(1,3), (4,0),(3,1)...$
Higgs: Can It Not Be There?

• Forget theorists and their smarty pants hierarchy problems…

• Here is a real deal:
 • Despite some new problems, SM (with Higgs) is still a pretty good model that passed many tests to enormous precision
 • Higgs regulates some striking divergences in SM
 • Consider WW scattering, take out Higgs and probability of \(WW \rightarrow WW \) is greater than one above 1 TeV!
 • LHC will either see Higgs or, if it is not there, will see whatever is playing its role
What We Know about Higgs

- Direct attempts to measure:
 - LEP and Tevatron:
 - $M_H > 114$ & not 170 GeV

- Indirect measurements:
 - Higgs shows up through loop corrections
 - E.g. Tevatron M_W vs M_{top}
CMS Reach for Higgs

• Bring together direct and indirect:
 • Construct χ^2 vs plausible higgs masses
 • Data likes light Higgs

• LHC discovery:
 • If $M_H \sim M_{WW}$: 1 fb$^{-1}$ (1 yr)
 • Or rule out SM Higgs
 • Anywhere: 10 fb$^{-1}$
 • Might take \sim3 yrs
Searching For Higgs

• Slightly simplifying, we are going to:
 • Go over millions of events
 • Reconstruct each and every particle in all of the events
 • Look for that one collision where higgs was produced
 • But do we know what are we looking for if we don’t even know its mass?

• Depending on higgs mass, one would look in one of several different ways
 • We don’t know higgs mass, so we will look for all possibilities at once:
 • All possible production mechanisms and decay channels
New Physics Discovery in October?

• Not so fast: no physics results till detector performance is well understood with real data:
 • Precision in understanding sub-systems will continuously improve with more data, more experience and better understanding of other sub-systems
 • Alignment, calibrations, jet energy scale, MET

• Two closely inter-related directions
 • Object-based commissioning:
 • Tracks for alignment, min-bias for equalizing calorimeter tower calibrations etc.
 • Validation with “standard candles”:
 • Z mass, resolution, MET in Z/W/top events etc.
Detector Alignment

• Critical for any physics analysis
 • Three detectors to align:
 • Tracker, calorimeter, muon system
• Texas A&M in charge of muon alignment project with data:
 • Jim Pivarski, A.S., Sergey Senkin (just joined)
• On the right: the very first real LHC data showing muons passing through CMS muon detectors
 • The plot made by Jim on September 10, 2008 in ENPH 114T
 • That’s day 1 of the new LHC era!
Physics with Muons

• When alignment task completed:
 • Re-discover “old physics” in 2008
 • Z and W bosons
 • And onwards on the path to new physics:
 • New heavy resonances decaying to $\mu\mu$, e.g. Z' or extra dimensions (all)
 • New heavy quarks decaying to Z’s (Pivarski)
 • “Higgs with a twist” $H\rightarrow\alpha\alpha\rightarrow\mu\mu\mu\mu$ (Senkin)
Physics with Taus

- Heaviest lepton, notoriously difficult to reconstruct at hadron colliders, but very important
 - TAMU came to CMS with world-best expertise in tau reconstruction
- We are now the key leader in taus at CMS
 - Gurrola, Kamon, Mason, Nguyen (CMS tau trigger coordinator, on the picture), A.S. (CMS tau group convener)
- Road Map:
 - 2008: rediscover $Z \rightarrow \tau \tau$ (Gurrola, Nguyen)
 - Onto new physics: Higgs and Z-prime (Gurrola, Nguyen, Mason)
Physics with Missing Energy

- Good calibration is crucial for SUSY searches, but notoriously difficult
 - J. Asaadi, A. Gurrola, T. Kamon, D. Toback

- We will join our MET and tau expertise in searches for Dark Matter
 - see Bhaskar’ colloquium last week
 - Kamon, Toback, Asaadi, Arnowitt, Dutta, A.S.
Detector Building: SLHC

- **LHC to SuperLHC:**
 - Two Phases: 2013 and 2018
 - Accelerator upgrades: 200-400 collisions per bunch crossing vs 20-50 for LHC
 - An enormous analysis and trigger challenge
 - Substantial upgrade of all detectors necessary to work in new environment
 - Now is the time to start building
 - Compare to 10-15 years to build CMS
- **TAMU is a leader in several upgrade projects**
Muon Trigger Electronics Project

• We took a major responsibility to build a Muon Trigger Motherboard
• New turf, implies state of the art in-home fast electronics design and building capabilities
 • Sasha Golyash, a highly experienced EE (13+ years in HEP) joined us in 2006
 • A complete test stand assembled at CERN, will be shipped to TAMU in early 2009
 • Sasha relocates to TAMU in May 2009
 • Will join V. Khotilovich, our software engineer (+ A.S + postdocs, students)
• Success of this project will greatly enhance our standing in the field
 • Also a unique and highly sought for training for students and postdocs
 • Major leverage in joining new projects
Track and Tau Trigger Upgrades

- SLHC environment will require much better triggering:
 - One major (and most expensive) upgrade is Level 1 track trigger
 - R&D and simulations work ongoing
 - Kamon, Weinberger
 - Tau trigger setup has to undergo a complete overhaul as well:
 - R&D, simulations, algorithm development
 - Khotilovich, Mason, A.S.
Summary

• The startup of Large Hadron Collider opens a new era in particle physics
 • While there is a lot of hard work ahead of us, we are on threshold of making major discoveries:
 • Higgs, origin of electroweak symmetry breaking, unification of forces, Dark matter, mater-antimatter asymmetry, and anything unexpected
 • Next 2-3 years may completely change our understanding of the world around us
• Texas A&M will be on the forefront of making these breakthrough discoveries
 • Stay tuned!