Search for Dark Matter in $\tilde{\tau}_1 - \tilde{\chi}_1^0$.
Coannihilation Region at 500/800 GeV
ILC

Blair Jasper †, Mauricio Barbi †, Bhaskar Dutta ‡, Teruki Kamon ‡,
Vadim Khotilovich ‡, Nikolay Kolev †

†University of Regina
‡ Texas A&M University

Blair Jasper (University of Regina)
WNPPC07
Outline

- Physics Motivation
 - Dark Matter, SUSY, Minimal Supergravity motivated study

- Measuring CDM Relic Density at ILC

- Complications
 - Two-photon background

- 500 GeV Analysis

- 800 GeV Analysis

- Summary
Standard Cosmological Model

- 23% of universe composed of “Dark Matter” (DM)
- Does not emit or reflect EM radiation
- Presence inferred by cosmic microwave background (CMB) (e.g., WMAP), gravitational effects (e.g., rotational curves), collision of galaxies, etc.
SUSY as a Candidate for DM

- In supersymmetric (SUSY) theories, every fundamental fermion has a bosonic superpartner, and vice-versa.

- Lightest SUSY particle (LSP) is a suitable candidate for cold dark matter (CDM).
 - Ω_{LSP} falls in the range of Ω_{CDM} ($\Omega \equiv$ relic density).

\[
\left(\Omega_{\text{CDM}}\right)^{-1} \propto e^{-\Delta M / 20}
\]

Where $\Delta M = M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}$
Minimal Supergravity (mSUGRA)

- mSUGRA as benchmark in many LHC and ILC studies
- Depends on only four parameters and one sign:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{1/2}$</td>
<td>Common gaugino (spin=1/2) mass (GeV)</td>
</tr>
<tr>
<td>m_0</td>
<td>Common scalar (spin=0) mass (GeV)</td>
</tr>
<tr>
<td>$\tan\beta$</td>
<td>Ratio of 2 v.e.v.'s</td>
</tr>
<tr>
<td></td>
<td>(2 Higgs doublets; H_u & H_d)</td>
</tr>
<tr>
<td>$\text{sign}(\mu)$</td>
<td>Sign of Higgs mixing parameter μ (GeV)</td>
</tr>
<tr>
<td>A_0</td>
<td>Trilinear coupling (GeV)</td>
</tr>
</tbody>
</table>

- LSP is the neutralino: $\tilde{\chi}_1^0$; NLSP is the stau: $\tilde{\tau}_1$
- Small ΔM allows $\tilde{\tau}_1$ and $\tilde{\chi}_1^0$ to coannihilate, contributing to current amount of CDM
mSUGRA Constraints

\[\tan \beta = 40, \mu > 0, A_0 = 0 \]

\[\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0} = 5 \sim 15 \text{ GeV} \]

\[\tilde{\tau}_1^- \rightarrow \tau^- \tilde{\chi}_1^0 \]
SUSY Signature at ILC

- Look for final state $\tau^+ \tau^- + E_{\text{MISS}}$

$\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}^0_1} = 5 \sim 15 \text{ GeV}$
Complications

- SM backgrounds at ILC include 4-fermion WW, ZZ, Zνν production; $\gamma\gamma$ process

Polarized beams suppress 4-fermion bkg.

Two-photon ($\gamma\gamma$) process
\[e^+ e^- \rightarrow \gamma\gamma e^+ e^- \rightarrow \tau^+ \tau^- e^+ e^- \]

@ 500 GeV:
- Lower energy τ's
- $N_{2\gamma}(500 \text{ fb}^{-1}) \approx 13M \text{ events!}$

We need to detect τ^+ and τ^- going very close to the beam direction (down to 1°).

- Polarization does not reduce $\gamma\gamma$ background
- $\gamma\gamma$ cross-section is large
- If we don’t detect e^+ and e^- along the beamline, the event appears as $\tau^+ \tau^- + E_{\text{MISS}}$
500 GeV Analysis

- Assume 1° forward detector (for forward e⁺e⁻ detection)
- Optimize selection cuts (kinematical, topological)
- maximize sensitivity to signal events
- Extract ΔM by fitting the effective mass of τ⁺τ⁻ + E_{MISS} system.

Accuracy of Mass Determination

<table>
<thead>
<tr>
<th>ΔM (mₐ) [GeV]</th>
<th>N_{500 fb⁻¹}</th>
<th>ΔM ("500 fb⁻¹ experiment")</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2° Detector</td>
<td>1° Detector</td>
</tr>
<tr>
<td>4.76 (205)</td>
<td>122</td>
<td>Not determined</td>
</tr>
<tr>
<td>9.53 (210)</td>
<td>787</td>
<td>9.5^{+1.0}_{-1.0} GeV</td>
</tr>
<tr>
<td>12.37 (213)</td>
<td>1027</td>
<td>12.5^{+1.1}_{-1.1} GeV</td>
</tr>
<tr>
<td>14.27 (215)</td>
<td>1138</td>
<td>14.5^{+1.1}_{-1.1} GeV</td>
</tr>
</tbody>
</table>

NEED: 1° coverage at 500-GeV LC

δ(ΔM)/ΔM ~ 10% → Good accuracy
800 GeV Analysis

- ΔM measurement with new version of ILC detector simulation package
- What is the optimized forward detector design? Is 1° sufficient? 0.5°?

800 GeV allows larger parameter space
Neutralinos are suitable candidates for CDM

Small ΔM allows for coannihilation

Careful measurements of ΔM and other SUSY parameters at ILC can lead to measurement of relic neutralino density $\Omega_{\chi_1^0}$

Preliminary results show it is possible to measure ΔM to 10% accuracy at 500 GeV LC

Next: Need to study at 800 GeV (large reach of SUSY parameter space)
References