Rare Decays at the Tevatron

Michael Weinberger
Texas A&M University
Lattice QCD Meets Experiment Workshop 2007

December 10, 2007

Outline

- Experimental Environment
- $B_S \rightarrow \mu \mu$ (CDF & D0)
- $B_S \rightarrow \mu \mu X$ (CDF & D0)
- $B, \Lambda_b \rightarrow hh$ (CDF)
- FCNC D Decay (D0)
Tevatron

Tevatron is gold mine for rare B decay searches:
- Enormous b production cross section, $x1000$ times larger than e^+e^- B factories
- All B species are produced ($\bar{B}^0, B^+, B_s, \Lambda_b...$)

Dataset:
- Di-muon sample, easy to trigger on with good purity level in hadronic environment
- Analyses presented today use 0.450 to 2 fb$^{-1}$ of data

B Triggers

- **Trigger is the lifeline of B physics in a hadron environment**
- Rare B “Di-Muon” triggers:
 - Low single muon thresholds
 - Require Sum p_T or outer muon chambers
 - Di-muon trigger is the primary trigger for the CDF $B_s \rightarrow \mu^+\mu^-$ search

- “Hadronic” triggers using silicon vertex detectors:
 - Exploit long lifetime of heavy quarks
 - Two-track trigger
 - Two oppositely charged tracks with large impact parameters
BRIEF MOTIVATION

In the Standard Model, the FCNC decay of $B_s \rightarrow \mu^+\mu^-$ is heavily suppressed. The SM prediction is below the sensitivity of current experiments. Expect to see 0 events at the Tevatron (Buchalla & Buras, Misiak & Urban).

- $B_d \rightarrow \mu\mu$ is further suppressed by CKM factor $(V_{td}/V_{ts})^2$.

- SM prediction is below the sensitivity of current experiments.

Any signal at the Tevatron would indicate new physics.

- New limits place boundaries on theoretical models.
Analysis Overview

\[BR(B_s^+ \to \mu^+\mu^-) = \frac{N_{B_s}}{N_{B^+}} \cdot \frac{\alpha_{B^+} \cdot \varepsilon_{B^+}^{\text{total}}}{\alpha_{B^+} \cdot \varepsilon_{B^+}^{\text{total}}} \cdot \frac{f_{B^+ \to B_s}}{f_{B^+ \to B_s}} \cdot BR(B^+ \to J/\psi K^+) \cdot BR(J/\psi \to \mu^+\mu^-) \]

Motto: reduce background and keep signal efficiency high

Step 1: Pre-selection cuts to reject obvious background

Step 2: Optimization (need to know signal efficiency and expected background)

Step 3: Reconstruct \(B^+ \to J/\psi K^+ \) normalization mode

Step 4: Open the box \(\rightarrow \) compute branching ratio or set limit

B \to \mu^+\mu^- SIGNAL VS BKG DISCRIMINATION

- **\(\mu^+\mu^- \) mass \(\sim \pm 2.5 \sigma \) mass window
- **B vertex displacement:** \(\lambda = \frac{c\Delta L}{\langle T \rangle} \)
- **Isolation (Iso):** \(ISO = \frac{p_{\tau}(B) + \sum p_{\tau}(\Delta R_i < 1)}{p_{\tau}(B)} \)
- **"pointing \((\Delta \alpha)"\):** \(\Delta \alpha = \angle (\vec{p}_B, \vec{L}_{B_0}) \)
- **\(\lambda/\sigma_\lambda \):** proper decay length significance
- **\(p_T(\mu\mu) \):** transverse momentum of Bs
- **\(p_T(\mu)_{\text{low}} \):** lower \(\mu \) pT
Discriminating Variables

- Combine in Likelihood for D0 or NN (New Element) for CDF which takes into account the correlations between the variables
 - Removes 25% of the background
- Set limit by using 3 NN bins and 5 mass bins (New Element)
 - Improves expected limit by 25%
- Unbiased optimization
 - Based on simulated signal and data sidebands

CDF Control Samples

- Independent background control samples to cross check the combinatoric background estimate procedure

OS - : Opposite-sign dimuon sample with ct<0

SS+ : Same-sign dimuon sample with ct>0

SS- : Same-sign dimuon sample with ct<0

FM : Fake muon sample ct>0
 (require at least one muon leg to fail our muon likelihood and dE/dX requirement)
Checking Control Samples

<table>
<thead>
<tr>
<th>NeuralNet cut</th>
<th>CMU-CMU</th>
<th>CMU-CMX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pred</td>
<td>obsv</td>
</tr>
<tr>
<td>>0.80</td>
<td>231±8</td>
<td>230</td>
</tr>
<tr>
<td>OS- >0.90</td>
<td>133±6</td>
<td>137</td>
</tr>
<tr>
<td>>0.995</td>
<td>23±3</td>
<td>21</td>
</tr>
<tr>
<td>>0.80</td>
<td>1.2±0.6</td>
<td>0</td>
</tr>
<tr>
<td>SS+ >0.95</td>
<td>0.6±0.4</td>
<td>0</td>
</tr>
<tr>
<td>>0.995</td>
<td>0.3±0.3</td>
<td>0</td>
</tr>
<tr>
<td>>0.80</td>
<td>2.4±0.8</td>
<td>2</td>
</tr>
<tr>
<td>SS- >0.90</td>
<td>1.2±0.6</td>
<td>2</td>
</tr>
<tr>
<td>>0.98</td>
<td>0.3±0.3</td>
<td>0</td>
</tr>
<tr>
<td>>0.80</td>
<td>26.1±2.8</td>
<td>25</td>
</tr>
<tr>
<td>FM >0.95</td>
<td>8.4±1.6</td>
<td>5</td>
</tr>
<tr>
<td>>0.995</td>
<td>3.3±1.0</td>
<td>3</td>
</tr>
</tbody>
</table>

• Using a wider ± 150 MeV signal window for cross-check

Combinatorial BKG (2/fb)

• Likelihood fit (polynomial) to sidebands
• Separate fit for 3 NN slices
Use linear fit for NN>0.995 slice

Also calculate the B->hh contributions which are added in to background estimate
Unblinding the Signal Region

No significant excess observed!

Limit History

New Results are world’s best limits

CDF:
\[\text{Br}(B_s \rightarrow \mu \mu) < 4.7 \times 10^{-8} @ 90\% \text{CL} \]
\[< 5.8 \times 10^{-8} @ 95\% \text{CL} \]

D0:
\[\text{Br}(B_s \rightarrow \mu \mu) < 7.5 \times 10^{-8} @ 90\% \text{CL} \]
\[< 9.3 \times 10^{-8} @ 95\% \text{CL} \]
SO(10) Grand Unification Model

Pink regions are excluded by either theory or experiments

Green region is the WMAP preferred region

Blue dashed line is the Br(B_s → µ⁺µ⁻) contour

Light blue region excluded by old B_s → µµ analysis

Pink regions are excluded by either theory or experiments

Blue dashed line is the Br(B_s → µ⁺µ⁻) contour

Light blue region excluded by old B_s → µµ analysis

Our old result

New Limit

R. Dermisek et al., JHEP 0304 (2003) 037

SO(10) Grand Unification Model

Pink regions are excluded by either theory or experiments

Green region is the WMAP preferred region

Blue dashed line is the Br(B_s → µ⁺µ⁻) contour

Light blue region excluded by old B_s → µµ analysis

Br(B_s → µ⁺µ⁻) at tanβ = 50

95% CL Limits on Br(B_s → µ⁺µ⁻)

mSUGRA at tanβ = 50

m_{12}(GeV)

[B_f C_f] (GeV)

B(B_s → µ⁺µ⁻) and Cosmological Connection

Branching Fraction x 10^7

Luminosity (pb⁻1)
$B(B_s \rightarrow \mu \mu)$ and Cosmological Connection

95% CL Limits on $B(B_s \rightarrow \mu \mu)$

Arnowitt, Dutta, et al., PLB 538 (2002) 121

$M_{R'} \sim 1100 \text{ GeV/c}^2$
$\mathcal{B}(B_s \to \mu\mu)$ and Cosmological Connection

CDF's analysis is also sensitive to $B_d^- \to \mu \mu$
- Due to excellent mass resolution
- ~ 25 MeV/c2

Expected limit 1.3×10^{-8} at 90% confidence level

Gives new world’s best limit of:

$$BR(B_d \to \mu^+ \mu^-) < 1.5 \times 10^{-8} (1.8 \times 10^{-8})$$

at 90% (95%) C.L.
Search for $B \rightarrow \mu \mu h$

- Non-resonant decays $B \rightarrow \mu \mu h$ via box or penguin diagrams
 - new physics may be observable through interference with SM amplitudes

- Already observed (BaBar, Belle):
 - $B_u \rightarrow \mu \mu K$
 - $B_d \rightarrow \mu \mu K^*$

- Missing:
 - $B_s \rightarrow \mu \mu \phi$
 - prediction: $BR(B_s \rightarrow \mu \mu \phi) = 1.6 \times 10^{-6}$

Search Methodology

- Similar method as used for $B_s \rightarrow \mu \mu$
- Unbiased (blinded) selection optimization using
 - signal event sample: MC simulation
 - background sample: data sidebands
- Normalize to analogous resonant $B \rightarrow J/\psi \, h$ decay

$$\frac{BR(B \rightarrow \mu^+ \mu^- h)}{BR(B \rightarrow J/\psi h) \cdot BR(J/\psi \rightarrow \mu^+ \mu^-)} = \frac{N_{h \mu \mu} \epsilon_{J/\psi h}^{\text{total}}}{N_{J/\psi h} \epsilon_{J/\psi h}^{\text{total}}}$$

- Apply cuts on search mode and normalization mode
- Remove resonant $\mu \mu$ by cutting out J/ψ / $\psi(2S)$ mass ranges
- Unblind

Selection Strategy

Optimize selection based on cuts on similar quantities as used for $B_s \rightarrow \mu \mu$ (decay length, isolation, pointing angle)

Optimize on best value for

$$\frac{S}{\sqrt{S+B}}$$
Observations

<table>
<thead>
<tr>
<th>Observation</th>
<th>(B_u \to \mu \mu K)</th>
<th>(B_d \to \mu \mu K^*)</th>
<th>(B_s \to \mu \mu \phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td># events signal range</td>
<td>90</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td># estim. BG events</td>
<td>(45.3 \pm 5.8)</td>
<td>(16.5 \pm 3.6)</td>
<td>(3.5 \pm 1.5)</td>
</tr>
<tr>
<td>Significance</td>
<td>(4.5 \sigma)</td>
<td>(2.9 \sigma)</td>
<td>(2.4 \sigma)</td>
</tr>
</tbody>
</table>

Results (World’s Best)

\[
\text{BR}(B^+ \to \mu \mu K^+) = (0.72 \pm 0.15\text{(stat.)} \pm 0.05\text{(syst.)}) \times 10^{-6}
\]

\[
\text{BR}(B^0 \to \mu \mu K^*) = (0.82 \pm 0.31\text{(stat.)} \pm 0.10\text{(syst.)}) \times 10^{-6}
\]

- **D0:** \[
\frac{\text{BR}(B_s \to \mu \mu \phi)}{\text{BR}(B_s \to J/\psi \phi)} < 4.4 \cdot 10^{-3} \text{ at } 95\% \text{ C.L.} \quad 0.45 \text{ fb}^{-1}
\]

- **CDF:** \[
\frac{\text{BR}(B_s \to \mu \mu \phi)}{\text{BR}(B_s \to J/\psi \phi)} < 2.61 \cdot 10^{-3} \text{ at } 95\% \text{ C.L.} \quad 1 \text{ fb}^{-1}
\]

New World’s Best Limit
\[B, \Lambda_b \rightarrow hh \]

\[B^0, B_S, \Lambda_b \rightarrow \pi\pi, K\pi, KK \]

- B→hh decays are the most used B decays for study of CPV because only two light bodies → plenty of final states to measure same observables allowing multiple constraints on interesting parameters as CKM angle gamma.
- The fact that penguin diagrams (bottom-right) participate gives sensitivity to new physics.
- CDF already obtained important results such as: first observation of \(B_S \rightarrow KK \), and measurement of direct CPV asymmetries in \(B^0 \rightarrow K^+\pi^- \).
B → hh' Trigger

- Hard to trigger, only two "stable" hadrons in final state
- Exploit long lifetime of the B-hadrons

Confirm trigger cuts offline
Peak already visible

Disentangling modes

- Despite excellent mass resolution (≈ 22MeV/c^2) different decays overlaps
- Event-by-event particle ID not sufficient to separate modes
 ⇒ Combined kinematics and particle ID fit
Fit Yields

Large yields for known modes

Signal events:

\[B^0 \rightarrow \pi^+ \pi^- \quad 1121 \pm 63 \]
\[B^0 \rightarrow K^+ \pi^- \quad 4045 \pm 84 \]
\[B_s \rightarrow K^+ K^- \quad 1307 \pm 64 \]

\(B(B^0 \rightarrow \pi^+ \pi^-) \)	\(0.259 \pm 0.017 \pm 0.015 \)
\(B(B^0 \rightarrow K^+ \pi^-) \)	\((5.10 \pm 0.33 \pm 0.36) \cdot 10^{-6} \)
\(B(B_s \rightarrow K^+ K^-) \)	\(0.324 \pm 0.019 \pm 0.041 \)
\(B(B_s \rightarrow K^- K^-) \)	\((24.4 \pm 1.4 \pm 4.6) \cdot 10^{-6} \)

• Three New Modes

\[B_s \rightarrow K^- \pi^+ \quad 230 \pm 34 \pm 16 \quad 8\sigma \]
\[\Lambda_b \rightarrow p \pi^- \quad 110 \pm 18 \pm 16 \quad 6\sigma \]
\[\Lambda_b \rightarrow p K^- \quad 156 \pm 20 \pm 11 \quad 11\sigma \]

First measurement of direct CP violating asymmetries in \(\Lambda_b \rightarrow p \pi \) decays

\[A_{CP}(\Lambda_b^0 \rightarrow p \pi^-) = \frac{B(\Lambda_b^0 \rightarrow p \pi^-) - B(\bar{\Lambda}_b^0 \rightarrow \bar{p} \pi^+)}{B(\Lambda_b^0 \rightarrow p \pi^-) + B(\bar{\Lambda}_b^0 \rightarrow p \pi^+)} = 0.03 \pm 0.17 \text{ (stat.)} \pm 0.05 \text{ (syst.)}, \]

\[A_{CP}(\Lambda_b^0 \rightarrow p K^-) = \frac{B(\Lambda_b^0 \rightarrow p K^-) - B(\bar{\Lambda}_b^0 \rightarrow \bar{p} K^+)}{B(\Lambda_b^0 \rightarrow p K^-) + B(\bar{\Lambda}_b^0 \rightarrow p K^+)} = 0.37 \pm 0.17 \text{ (stat.)} \pm 0.03 \text{ (syst.)}, \]
First measurement of Branching Ratios in $\Lambda_b \to p\phi$ decays

\[
\begin{align*}
\sigma(p\bar{p} \to \Lambda_b^0 X, p_T > 6 \text{ GeV/c}) & \quad B(\Lambda_b^0 \to p\pi^-) = 0.0415 \pm 0.0074 \text{ (stat.)} \pm 0.0058 \text{ (syst.)}, \\
\sigma(p\bar{p} \to B^0 X, p_T > 6 \text{ GeV/c}) & \quad B(B^0 \to K^+\pi^-) = 0.0663 \pm 0.0089 \text{ (stat.)} \pm 0.0084 \text{ (syst.)}.
\end{align*}
\]

Using $\text{Br}(B \to K^+\pi)$ and ratios of fragmentation functions, can extract Λ_b branching ratios:

\[
\begin{align*}
B(\Lambda_b^0 \to p\pi^-) & = (3.1 \pm 0.6 \text{ (stat.)} \pm 0.7 \text{ (syst.)}) \times 10^{-6}, \\
B(\Lambda_b^0 \to pK^-) & = (5.0 \pm 0.7 \text{ (stat.)} \pm 1.0 \text{ (syst.)}) \times 10^{-6}.
\end{align*}
\]

All results agree with the Standard Model Predictions

First Observation and BR Measurement of $B_S \to K\pi$

\[
\frac{f_S}{f_d} \frac{B(B_S \to K^-\pi^+)}{B(B^0 \to K^+\pi^-)} = 0.066 \pm 0.010 \pm 0.010
\]

Using input from HFAG

\[
\Rightarrow B(B_S \to K^-\pi^+) = (5.0 \pm 0.75 \pm 1.0) \times 10^{-6}
\]
Direct CP Violation

\[A_{CP} = \frac{N(\overline{B}^0 \rightarrow K^- \pi^+)}{N(\overline{B}^0 \rightarrow K^- \pi^+)} - \frac{N(B^0 \rightarrow K^+ \pi^-)}{N(B^0 \rightarrow K^+ \pi^-)} \]

\[= -0.086 \pm 0.023 \pm 0.009 \]

- Only significant difference in \(K^+/K^- \) interaction with material
- Calibrate with \(D^0 \rightarrow h^+h^- \) with assumption \(A_{CP}(D^0 \rightarrow K \pi) = 0 \)
- Dominant systematic uncertainty
 - Particle ID model
 - WA B meson masses

FCNC D Decays at D0

- First indication of CP violation in \(B_d \) system
- Sign and size agree with SM expectation
- No evidence for 'exotic' sources of CP violation
- Will repeat with more data (already 2.5fb^{-1} on tape)
General Description

- Another place where the SM is highly suppressed and a signal would be indication of new physics
- Uses 1.3 fb-1
- Search for D_S^+ and $D^+ \rightarrow \varphi \pi^+ \rightarrow \mu \mu \pi^+$
- Also looks at continuum decay $D^+ \rightarrow \mu \mu \pi^+$ away from φ resonance
- SM predictions at 10^{-9}

Methodology for Direct Decay

- Uses Dimuon trigger
- Reconstruct the dimuon spectrum
- Add in track
 - Use long lifetime properties to separate signal from background
 - Also uses kinematic properties of decay
 - Fits of daughters and decay angles
Continuum D $^+ \to \mu \mu \pi^+$

- Exclude $0.96 < \text{Mass}(\mu \mu \pi^+) < 1.06$ resonant peak
- Use same cuts as resonant decays, add in isolation
- 19 signal events seen
- Sideband background $\Rightarrow 25.8 \pm 4.6$
- Probability of background fluctuation is 14%
- Set limit on $D^+ \to \phi \pi^+ \to \mu \mu \pi^+$
 - $Br = 3.9 \times 10^{-6}$ at 90% c.l. New World’s best limit

Conclusions

- Rare decays are highly suppressed in the SM allowing for very sensitive probes of new physics at the Tevatron
- A lot of work is being done to improve the analyses, in addition to just adding luminosity, to push closer to the SM predictions
Search for Λ_b

- No asymmetry previously seen in hadron decays
- Uses unbinned multivariate Likelihood fit
 - Uses PID

![Graphs showing mass distribution and invariant mass distribution for CDF Run II and Monte Carlo simulations.](image)
B->lh is calculated and added to plot before fitting.

- For B_s signal window
- Bkg includes B->lh backgrounds
- Combine all bins in 2d fit

<table>
<thead>
<tr>
<th>CMU-CMU</th>
<th>CMU-CMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN bin 0.040-0.055</td>
<td>NN bin 0.045-0.05</td>
</tr>
<tr>
<td>Expected Bkg</td>
<td>Expected Bkg</td>
</tr>
<tr>
<td>NN bin 0.050-0.065</td>
<td>NN bin 0.060-0.07</td>
</tr>
<tr>
<td>Expected Bkg</td>
<td>Expected Bkg</td>
</tr>
<tr>
<td>NN bin 0.060-0.075</td>
<td>NN bin 0.070-0.08</td>
</tr>
<tr>
<td>Expected Bkg</td>
<td>Expected Bkg</td>
</tr>
<tr>
<td>NN bin 0.070-0.085</td>
<td>NN bin 0.080-0.09</td>
</tr>
<tr>
<td>Expected Bkg</td>
<td>Expected Bkg</td>
</tr>
<tr>
<td>NN bin 0.080-0.095</td>
<td>NN bin 0.090-0.10</td>
</tr>
<tr>
<td>Expected Bkg</td>
<td>Expected Bkg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CMU-CMU</th>
<th>CMU-CMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN bin 0.040-0.055</td>
<td>NN bin 0.045-0.05</td>
</tr>
<tr>
<td>Observed</td>
<td>Observed</td>
</tr>
<tr>
<td>NN bin 0.050-0.065</td>
<td>NN bin 0.060-0.07</td>
</tr>
<tr>
<td>Observed</td>
<td>Observed</td>
</tr>
<tr>
<td>NN bin 0.060-0.075</td>
<td>NN bin 0.070-0.08</td>
</tr>
<tr>
<td>Observed</td>
<td>Observed</td>
</tr>
<tr>
<td>NN bin 0.070-0.085</td>
<td>NN bin 0.080-0.09</td>
</tr>
<tr>
<td>Observed</td>
<td>Observed</td>
</tr>
<tr>
<td>NN bin 0.080-0.095</td>
<td>NN bin 0.090-0.10</td>
</tr>
<tr>
<td>Observed</td>
<td>Observed</td>
</tr>
</tbody>
</table>