Detection of SUSY Signals in Stau-Neutralino Coannihilation at Colliders

R. Arnowitt,1) A. Aurisano,1)* B. Dutta,1) T. Kamon,1) V. Khotilovich,1)* N. Kolev,2) P. Simeon,1)** D. Toback,1) P. Wagner1)*

1) Department of Physics, Texas A&M University
2) Department of Physics, Regina University, Canada

* Graduate Student ** Undergraduate Student

Complementarity between Dark Matter Searches and Collider Experiments
UC Irvine, California, USA
Saturday June 10 and Sunday June 11
Cosmology, SUSY, WIMP \(\Rightarrow \) Stau neutralino coannihilation in minimal supergravity (mSUGRA) model

Prospects of detection of SUSY in coannihilation region at the LHC

Conclusion and Future Tasks
THINKING ABOUT THE UNIVERSE

- 14 B yrs
- 500 M yrs
 Galaxy Formation
- 1 s
- 10^{-7} s
 SUSY Dark Matter
- 10^{-11} s
 Standard Model + SUSY
- 10^{-43} s
 Quantum Gravity

- $t = 10^{-35}$ s
 $T = 10^{5}$ GeV
- $t = 10^{-33}$ s
 $T = 10^{4}$ GeV
- $t = 10^{2}$ s
 $T = 1$ GeV
- $t = 10^{-4}$ s
 $T = 1$ MeV
- $t = 3$ minutes
- $t = 400,000$ years
 $T = 3000$ K (1 eV)
- $t = 5$ K (1 meV)

Early Universe

Cosmological Connection?
SUSY is an interesting class of models to provide a massive neutral particle \((m \sim 100 \text{ GeV})\) and weakly interacting (WIMP).

\[
\Omega \tilde{\chi}_1^0 h^2 \sim \int_0^{x_f} \frac{1}{\langle \sigma_{\text{ann}} v \rangle} \, dx
\]

\[
\langle \sigma_{\text{ann}} v \rangle = \frac{\pi \alpha^2}{8m^2}
\]

\[
0.2 \leq \Omega \tilde{\chi}_1^0 h^2 \leq 0.9 \text{ pb}
\]
CDM = Neutralino ; NLSP = stau

\[
(\Omega_{\text{CDM}})^{-1} \propto \left[\begin{array}{c}
\tilde{\chi}_1^0 \\
\tilde{\chi}_1^0 \\
h, H, A, Z
\end{array} \right]
\]

\[
\left[\begin{array}{c}
\tilde{\chi}_1^0 \\
\tilde{\chi}_1^0 \\
f
\end{array} \right]
\]

\[
\left[\begin{array}{c}
\tilde{\chi}_1^0 \\
f
\end{array} \right]
\]

\[
\left[\begin{array}{c}
\tilde{\tau}_1 \\
\gamma
\end{array} \right]
\]

\[
e^{-\Delta M / 20}
\]

\[
\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}
\]

mSUGRA naturally provides a lighter stau.
Minimal Supergravity (mSUGRA)

4 parameters + 1 sign

- $m_{1/2}$: Common gaugino mass at M_G
- m_0: Common scalar mass at M_G
- A_0: Trilinear coupling at M_G
- $\tan \beta$: $<H_u>/<H_d>$ at the electroweak scale
- $\text{sign}(\mu)$: Sign of Higgs mixing parameter ($W^{(2)} = \mu H_u H_d$)

Experimental Constraints

1. $M_{\text{Higgs}} > 114$ GeV $M_{\text{chargino}} > 104$ GeV
2. $2.2 \times 10^{-4} < Br (b \rightarrow s \gamma) < 4.5 \times 10^{-4}$
3. $0.094 < \Omega_{\tilde{\chi}_1^0} h^2 < 0.129$
In SUGRA models, the lightest stau seems to be naturally very close to the lightest neutralino mass especially for large $\tan \beta$.

For example, the R- selectron (\tilde{E}^c) mass is related to the lightest neutralino ($\tilde{\chi}^0_1$) mass by the following relations at the electroweak scale:

$$m_{\tilde{E}^c}^2 = m_0^2 + (6/5) f_1 m_{1/2}^2 - \sin^2 \theta_W M_W^2 \cos(2\beta)$$

$$m_{\tilde{\chi}^0_1} = (\alpha_1/\alpha_G)m_{1/2}$$

where $f_i = [1-(1+\beta_i t)^{-2}]/\beta_i$, $t = \ln(M_G/M_Z)^2$, β_1 is the $U(1)_Y$ β function coefficient (one loop), α_1 is the $U(1)_Y$ gauge coupling constant ($\times 5/3$) at the M_Z scale and α_G is the gauge coupling constant at M_G.
Stau Neutralino Coannihilation and GUT Scale

- Numerically this gives e.g., for $\tan \beta = 5$

$$m_{\tilde{E}^c}^2 = m_0^2 + 0.15m_{1/2}^2 + (37 \text{ GeV})^2$$

$$m_{\tilde{\chi}_1^0}^2 = 0.16m_{1/2}^2$$

- Thus for $m_0 = 0$, the mass of \tilde{E}^c becomes degenerate with the $\tilde{\chi}_1^0$ at $m_{1/2} = 370$ GeV, i.e. co-annihilation effects roughly begin at $m_{1/2} \approx (350 - 400)$ GeV. (The numerical coefficients are determined by solving the renormalization group equations).

- For larger $m_{1/2}$, the near degeneracy is maintained by increasing m_0, and we get: a corridor in the $m_0 - m_{1/2}$ plane.

The coannihilation channel occurs in most SUGRA models with non-universal soft breaking,
Cosmologically Allowed Region

- Dark Energy 73%
- Dark Matter 23%
- Cold Atoms 4%

$m_{\chi_0} > m_{\tau}$

$m_{1/2}$ vs m_0 plot with labeled regions:
- $A_0 = 0$, $\mu > 0$, $\tan \beta = 40$
- $b \rightarrow s \gamma$
- $a < 11 \times 10^{-10}$

$m_{1/2}$ [GeV] vs m_0 [GeV] graph.
Can we measure ΔM at colliders?

$\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0} = 5 \sim 15$ GeV
Cosmology, SUSY, WIMP ⇒ Stau neutralino coannihilation in minimal supergravity (mSUGRA) model

Prospects of detection of SUSY in coannihilation region at the LHC

Conclusion and Future Tasks
SUSY Signature at the LHC

Squark-Gluino Production

\[\tilde{\chi}_2^0 \rightarrow \tau^+ + \tilde{\tau}_1^- \rightarrow \tau^+ + \tau^- \tilde{\chi}_1^0 \]

Triggering the jets and missing \(E_T \) → \(E_T^{\text{miss}} + \) jets + \(\tau^0 \)s
$E_T^{\text{miss}} + 2\text{j} + 2\tau$ Analysis (I)

[1] Sample of E_T^{miss}, 2 jets, and at least 2 taus with $p_T^{\text{vis}} > 40, 20$ GeV and $\epsilon_\tau = 50\%$, fake ($f_{j \rightarrow \tau}$) = 1%. Optimized cuts:

- $E_T^{\text{jet1}} > 100$ GeV; $E_T^{\text{jet2}} > 100$ GeV
- $E_T^{\text{miss}} > 180$ GeV
- $E_T^{\text{jet1}} + E_T^{\text{jet2}} + E_T^{\text{miss}} > 600$ GeV

[2] Number of SUSY and SM events (10 fb$^{-1}$):
- Top : 115 events
- W+jets : 44 events
- SUSY : 590 events

OS–LS counts (10 fb$^{-1}$) for $M_{\tau\tau} < 100$ GeV:
- Top : 6 counts
- W+jets : 1 count
- SUSY : 125 counts

$M_{\text{gluino}} = 830$ GeV ($\Delta M = 10.6$ GeV)
$E_T^{\text{miss}} + 2j + 2\tau$ Analysis (II)

$\mathbf{p_T^{\text{vis}} > 40, 20 \text{ GeV}}$

10 fb$^{-1}$

M_{peak}

$M_{\text{max}} = 78.7 \text{ GeV}$

How to Establish the Discovery

1. $N_{\text{OS–LS}}$ (Number of OS–LS counts)

2. Clear peak (M_{peak}) and end-point (M_{max}) in di-tau mass distribution for OS–LS pairs

3. M_{peak} is used to determine ΔM

$\mathbf{p_T^{\tau} > 20 \text{ GeV}}$ is essential!
A small ΔM can be detected in first few years of LHC.

[Assumption] The gluino mass is measured with $\delta M / M_{\text{gluino}} = \pm 5\%$ in a separate analysis.
$
ightarrow$ We extract ΔM from M_{peak}.

I. $\delta M_{\text{peak}} = \text{r.m.s}(M_{\text{peak}}) / \sqrt{N_{\text{OS-LS}}}$

II. $\delta M/M_{\text{gluino}} = \pm 5\%$

$\Delta M = 10 \pm 1.2^{+1.4}_{-1.2} \text{ GeV (10 fb}^{-1})$
Reach in $m_{1/2}$?

Reach in $m_{1/2}$?

Sliding cut on $E_{T}^{\text{jet1}} + E_{T}^{\text{jet2}} + E_{T}^{\text{miss}}$

With 100 fb$^{-1}$, the LHC could probe $m_{1/2}$ up to ~ 700 GeV

$\tan \beta = 40, \mu > 0 \quad A_0 = 0$

$m_{1/2} = 360$ GeV

$m_{1/2} = 360$ GeV

$m_{1/2}$ - $M_{\tilde{\chi}^0}$ [GeV]

30

20

10

0

200 400 600 800

$m_{1/2}$ [GeV]

1000

100

10

1

300 400 500 600 700 800

Luminosity (fb$^{-1}$)

$m_{1/2}$ (GeV)
$E_T^{\text{miss}} + 1j + 3\tau$ Analysis

Much smaller SM background, but a lower acceptance

1. Sample of E_T^{miss}, 1 jet and at least 3 taus with $p_T^{\text{vis}} > 40, 40, 20$ GeV and $\mathcal{E}_\tau = 50\%$, fake ($f_{j\rightarrow\tau}$) = 1\%. Final cuts:
 - $E_{T\text{jet}1} > 100$ GeV, $E_T^{\text{miss}} > 100$ GeV, $E_{T\text{jet}1} + E_T^{\text{miss}} > 400$ GeV

2. Select OS low di-tau mass pairs, subtract off LS pairs

Small dependence on the uncertainty of $f_{j\rightarrow\tau}$

Note: $f_{j\rightarrow\tau} = 0\% \rightarrow 1.6$ counts/fb$^{-1}$
Remark: 3τ events with Jet → τ Fakes

What is accepted by OS–LS?

<table>
<thead>
<tr>
<th>Analysis</th>
<th>"2τ"</th>
<th>"3τ"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ̄τ̄</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>τ̄j</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>τ̄τ̄τ̄</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>τ̄τ̄j</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Can produce ττ and τj pairs

- τj pairs will be cancelled in OS–LS, but ττ pairs from χ2̄0 contribute in the ττj case to the NOS–LS counting. Doesn’t affect ΔM measurement!

- The uncertainty on the jet → τ fake rate is required to be known, but ΔM measurement is not significantly effected even if the fake rate has a 20% systematic uncertainty.
3τ Analysis: Combined Results

- Use $N_{\text{OS-LS}}$ and $M_{\tau\tau}$ to independently measure ΔM
- Both produce high quality measurements
- As in the 2τ analysis, we assume a gluino mass
- Dominant uncertainty
 - 5% uncertainty on M_{gluino}

Combined results: $\Delta M = 10 \pm 1.3$ GeV (30 fb$^{-1}$)
3 τ Analysis: Measure ΔM and M_{gluino}

Next: combine $N_{\text{OS-LS}}$ and $M_{\tau\tau}$ values to measure ΔM and M_{gluino} simultaneously.

Counts drop with M_{gluino}

Mass rises with M_{gluino}

![Graph showing counts drop and mass rise with gluino mass](image)
3τ Analysis: Accuracy in ΔM & M_{gluino}

- $\Delta M = 9$ GeV
- $M_{gluino} = 850$ GeV
- Combined Measurement

\rightarrow 22% - 15%
(10 - 30 fb$^{-1}$)

\rightarrow 9% - 6%
(10 - 30 fb$^{-1}$)
Cosmology, SUSY, WIMP ⇔ Stau neutralino coannihilation in minimal supergravity (mSUGRA) model

Prospects of detection of SUSY in coannihilation region at the LHC

Conclusion and Future Tasks
Conclusion

Signals in the stau-neutralino coannihilation region are studied using mSUGRA model as a benchmark scenario ($\Delta M \sim 10$ GeV)

LHC: Two analyses with visible $p_T^{\tau} > 20$ GeV:

- **2τ analysis**: Discovery with 10 fb$^{-1}$
 - $\delta \Delta M / \Delta M \sim 18\%$ using M_{peak} with 5\% gluino mass error

- **3τ analysis**: Combine $N_{\text{OS-LS}}$ and M_{peak} measurements
 - $\delta \Delta M / \Delta M \sim 13\%$ with 30 fb$^{-1}$ and 5\% gluino mass error
 - $\delta \Delta M / \Delta M \sim 15\%$ and $\delta M_{\text{gluino}} / M_{\text{gluino}} \sim 6\%$ with no gluino mass assumption

- The analyses can be done for the other models that don’t suppress χ_2^0 production.

As a comparison, $\delta \Delta M / \Delta M \sim 10\%$ (500 fb$^{-1}$) at the ILC if we implement a very forward calorimeter to reduce two-photon background.

Future Tasks

How do we know the stau-neutralino co-annihilation is responsible for the relic density?

(1) No large higgsino component of neutralino – otherwise it will lower the relic density further.

(2) No A or H annihilation channel – it will lower the relic density.

(3) No other co-annihilation channels such as stop, sbottom, chargino.

All these criteria will have their unique signatures...

Small μ → Check chargino ...

$M_{A,H} = 2M_{\tilde{\chi}_1^0}$
Backups
Reference Points

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_0</td>
<td>210</td>
<td>212</td>
<td>215</td>
<td>217</td>
<td>220</td>
</tr>
<tr>
<td>\tilde{g}</td>
<td>831</td>
<td>831</td>
<td>831</td>
<td>831</td>
<td>832</td>
</tr>
<tr>
<td>\tilde{u}_L</td>
<td>764</td>
<td>764</td>
<td>765</td>
<td>765</td>
<td>766</td>
</tr>
<tr>
<td>\tilde{u}_R</td>
<td>740</td>
<td>740</td>
<td>741</td>
<td>741</td>
<td>742</td>
</tr>
<tr>
<td>\tilde{t}_2</td>
<td>744</td>
<td>744</td>
<td>744</td>
<td>745</td>
<td>745</td>
</tr>
<tr>
<td>\tilde{t}_1</td>
<td>578</td>
<td>578</td>
<td>579</td>
<td>579</td>
<td>580</td>
</tr>
<tr>
<td>$\tilde{\tau}_2$</td>
<td>331</td>
<td>332</td>
<td>333</td>
<td>334</td>
<td>336</td>
</tr>
<tr>
<td>\tilde{e}_L</td>
<td>323</td>
<td>324</td>
<td>326</td>
<td>328</td>
<td>330</td>
</tr>
<tr>
<td>$\tilde{\chi}^0_2$</td>
<td>266</td>
<td>266</td>
<td>266</td>
<td>266</td>
<td>266</td>
</tr>
<tr>
<td>\tilde{e}_R</td>
<td>252</td>
<td>254</td>
<td>256</td>
<td>258</td>
<td>260</td>
</tr>
<tr>
<td>$\tilde{\tau}_1$</td>
<td>149.9</td>
<td>151.8</td>
<td>154.8</td>
<td>156.7</td>
<td>159.5</td>
</tr>
<tr>
<td>$\tilde{\chi}^0_1$</td>
<td>144.2</td>
<td>144.2</td>
<td>144.2</td>
<td>144.2</td>
<td>144.2</td>
</tr>
<tr>
<td>$\Delta M(\equiv M_{\tilde{\tau}1} - M{\tilde{\chi}^0_1})$</td>
<td>5.7</td>
<td>7.6</td>
<td>10.6</td>
<td>12.5</td>
<td>15.4</td>
</tr>
<tr>
<td>$M_{\tilde{\tau} \tilde{\tau}}$</td>
<td>60.0</td>
<td>68.3</td>
<td>78.7</td>
<td>84.1</td>
<td>91.2</td>
</tr>
</tbody>
</table>
At the ILC ...

Stau-Pair Production

\[\Delta M \] Measurement

\[\frac{\delta \Delta M}{\Delta M} \approx 10\% \ (500 \ fb^{-1}) \]

if we implement a very forward calorimeter to reduce two-photon background.

Can we discover the signals in the coannihilation region at the LHC?

Final State: \[\tau^+ \tau^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \]

What will be \[\delta \Delta M / \Delta M \]?