SUSY-Cosmology at LHC

Alfredo Gurrola
in collaboration with
R. Arnowitt, B. Dutta, T. Kamon, A. Krislock,
P. Siméon, D. Toback – Texas A&M
N. Kolev – University of Regina

Cosmic Collision of Two Galaxy Clusters
splitting normal matter and dark matter apart
– Another Clear Evidence of Dark Matter (8/21/06) –

Exploring a possibility for detecting this Dark Matter
at the LHC

- Dark Matter and Supersymmetry
- Dark Matter Signal at the LHC
Cold Dark Matter (CDM) Particle

[1] Standard Model (SM) has not provided a solution.

[2] Supersymmetry (SUSY) extensions of SM naturally provide a weakly interacting massive particle that is stable: Lightest SUSY Particle (LSP)

Supersymmetry (SUSY)

[1] Fermion – Boson Symmetry

Every standard model fermion (boson) has a boson (fermion) supersymmetry partner (example: X → \(\tilde{X} \))

[2] This Fermion – Boson symmetry doubles the number of particles

\[Z^0 \rightarrow \tau^+ \tilde{\chi}^0_2 \rightarrow \tau^+ \tilde{\tau}^- \rightarrow \tilde{\chi}^0_1 \]

We use a well motivated model: Minimal Supergravity (mSUGRA)

\[= \text{SM} + \text{SUSY} + \text{Mass Universality} \]
[1] Dark Matter allowed region is characterized by a near degeneracy between the stau and the LSP

$$\Delta M = M_{\tilde{\tau}} - M_{\tilde{\chi}_1^0}$$

[2] Amount of Dark Matter depends on ΔM

Measurement of ΔM would be a “direct” detection of CDM!

Q: Can we measure ΔM at LHC?

[1] Squark, gluino production has a large cross section

[2] $\tau \tau$ final state is dominant
Review of $2\tau/3\tau$ Analyses at LHC

[1] References:

[2] Example – 2τ analysis: Optimized Cuts to reduce Standard Model background (e.g., top, W+jets)

- $E_T^{\text{miss}} > 180$ GeV
- $E_T^{\text{jet1}} > 100$ GeV, $E_T^{\text{jet2}} > 100$ GeV
- $H_T = E_T^{\text{miss}} + E_T^{\text{jet1}} + E_T^{\text{jet2}} > 600$ GeV
- $P_T^{\text{vis}} > 40, 20$ GeV

Measuring ΔM

[1] Invariant Ditau Mass

a. Subtract OS histogram and LS histogram to obtain the correct tau pairs

b. Ditau mass distribution end point M_{end} and peak position M_{peak} can be measured

c. Assuming gaugino unification, there is a dependence on M_g and ΔM {Assumption: M_g is measured in another analysis}

$P_T^{\text{vis}} > 20$ GeV is vital!
Measuring ΔM (cont’d)

[2] Number of OS-LS counts up to the theoretical endpoint

\[M_{\text{peak}} \text{ and } N_{\text{OS-LS}} \rightarrow \Delta M \text{ and } M_{\text{gluino}} \]

![Graph showing OS-LS counts vs. ΔM](image)

Negligible $f_{\tilde{f}\rightarrow\tau}$ dependence

\[\Delta M (\text{GeV}) \]

Measuring ΔM (Another Way)

[3] Slope of P_T distribution for soft τ (Preliminary Study)

\[ISAJET \ 7.69 \]

\[\tilde{\tau} \rightarrow \tau \tilde{\chi}^0_1 \]

Slope of P_T distribution contains ΔM Information.

Can we use P_T to test Gaugino Unification or other mSUGRA parameters?
Summary

- SUSY models naturally provide a Dark Matter candidate (LSP)
- Dark Matter Signature at the LHC: Jets + τ’s + E_T^{miss}
- Keys: P_{T(vis)} > 20 GeV ; ε = 50%, $f_{j\rightarrow \tau}$ = 1%
- Invariant Ditau Mass & N_{OS-LS} : ΔM and M_{gluino}
- Ongoing Study : Slope of Low Energy τ P_{T} to measure ΔM