Studies of Rare Beauty and Charm Decays with the CMS Experiment

Jose Lazo-Flores (UNL) for the CMS Collaboration

SUSY 2012 Beijing, China August 13, 2012
Outline

- The CMS detector
- Tracking and Muon reconstruction
- B-Physics triggers
- Rare decays
 - Search for the $D^0 \rightarrow \mu^+\mu^-$
 - Search for the $B_{s(d)} \rightarrow \mu^+\mu^-$

Jose.Lazo-Flores@cern.ch
August 13, 2012
The CMS Detector

- General details
 - Weight ~ 12500 tons
 - Length of 21.6 meters
 - Diameter of 15 meters
 - 3.8T Magnetic Field

- Sub-detectors used for this analysis
 - Silicon tracker
 - Si pixels and Si strips
 - Muon system

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel B(F)</td>
<td>3(2) Si Layers (Disks)</td>
<td>$\delta_z \approx 20 \mu m$, $\delta_\Phi \approx 10 \mu m$</td>
</tr>
<tr>
<td>Tracker B(F)</td>
<td>10(12) Si Strips</td>
<td>$\delta(p_T)/p_T \approx 1%$</td>
</tr>
<tr>
<td>ECal</td>
<td>PbWO$_4$</td>
<td>$\delta E/E \approx 3%/\sqrt{E} \oplus 0.5%$</td>
</tr>
<tr>
<td>HCal (B)</td>
<td>Bras/Sc, > 7.2λ</td>
<td>$\delta E/E \approx 100 \sqrt{E}%$</td>
</tr>
<tr>
<td>HCal (F)</td>
<td>Fe/Quartz</td>
<td>$\delta(ME_T) \approx 0.98\sqrt{\Sigma E_T}$</td>
</tr>
<tr>
<td>Magnet</td>
<td>3.8T Solenoid</td>
<td></td>
</tr>
<tr>
<td>Muon</td>
<td>DT/SCS and RPC</td>
<td>$\delta(p_T)/p_T \approx 10%$ (sta)</td>
</tr>
</tbody>
</table>

Jose.Lazo-Flores@cern.ch
August 12, 2011
Tracking and Muon Reconstruction

- Large Acceptance $|\eta| < 2.4$
 - Drift tubes (DT), cathode drift chambers (CDC), resistive plate chambers (RPC)

- Muon reconstruction algorithms
 - Standalone muon: reconstructed in muon system only
 - Global muon (GM): reconstructed outside-in,
 - Standalone muon \rightarrow inner track
 - Tracker muon (TM): reconstructed inside-out
 - Inner track \rightarrow muon detector

Muon misidentification

$\varepsilon(\mu | \pi) \leq 0.1\%$
$\varepsilon(\mu | K) \leq 0.1\%$
$\varepsilon(\mu | p) \leq 0.05\%$
B-Physics Triggers

- Total CMS rate of ~ 300 Hz
- B-Physics rate of a few Hz
 - Used mostly for muon triggers
 - Trigger requirements changed with increasing luminosity

- Trigger selections:
 - $|\eta|$ and p requirements for muons
 - Di-muon invariant mass
 - Impact parameter
 - Secondary vertex probability
 - Pointing angle
 - Flight length significance

![Histogram of dimuon mass](image.png)

2011 Run, L = 1.1 fb^{-1}

CMS $\sqrt{s} = 7$ TeV

- Trigger paths
 - ψ'
 - J/ψ
 - $B_s \rightarrow \mu^+\mu^-$
 - Y
 - low p_T, double muon
 - high p_T, double muon

August 13, 2012

Jose.Lazo-Flores@cern.ch
Search for the $D^0 \rightarrow \mu^+\mu^-$ decays

Motivation:
- Decay highly suppressed in SM
 - $\mathcal{B}(D^0 \rightarrow \mu^+\mu^-) \sim 10^{-13}$
- This is because:
 - FCNC are forbidden at tree level
 - Decay is helicity suppressed by a factor of $(m_\mu/m_D)^2$
- Decay is enhanced by some New Physics (NP) models
 - Any detection with current sensitivity would be clear evidence of NP

Current best limit from LHCb (LHCb-CONF-2012-005)
- $\mathcal{B}(D^0 \rightarrow \mu^+\mu^-) < 1.3 \times 10^{-8}$ @ 95% C.L.

Best limit from B factories
- Belle: $\mathcal{B}(D^0 \rightarrow \mu^+\mu^-) < 1.4 \times 10^{-7}$ @ 90% C.L.
Strategy

- Calculate the branching fraction by means of the ratio:
 - $D^{*+} \rightarrow D^0(\mu^+\mu^-)\pi^+/D^{*+} \rightarrow D^0(K^-\mu^+\nu)\pi^+$
 - Where $D^{*+} \rightarrow D^0\pi^+$ is the control channel
 - $D^0 \rightarrow K^-\mu^+\nu$ is the normalization channel
- The strategy was to measure the ratio in such a way that most of the systematic uncertainties cancel out
 - Normalization channel chosen for this purpose
 - First time a semi-leptonic channel is being used
- Limitation:
 - Single muon trigger is need for the normalization channel
Event Selection

- Muons: Tight quality → $|\eta| < 2.1$, $p_T > 3$ GeV including the trigger setting muon
- Kaons: Tight quality → $|\eta| < 2.1$, $p_T > 0.8$ GeV reconstructed with kinematic considerations
- Primary and secondary vertex (PV and SV): Vertex probability > 1%, 3D distance significance > 3
- Signal only requirement: $\cos \alpha > 0.99$, where α is the angle between the D^0 momentum and the PV-SV direction (pointing angle)
- Pion: Track $p_T > 0.6$ measured from the PV
- Normalization sample is fitted to extract $N(K_{\mu\nu})$
- Signal: two gaussians
- Background: modeled by the same sign $K-\pi$ sample

August 13, 2012

Porpoise

Events/(0.5 MeV/c2)

$\Delta M = M(K_{\mu\nu}\pi) - M(K_{\mu\nu})$ (MeV/c2)

CMS preliminary
$\sqrt{s} = 7$ TeV
$L = 54.53$ pb$^{-1}$

December

Events/(0.5 MeV/c2)

$\Delta M = M(\mu\mu\pi) - M(\mu\mu)$ (MeV/c2)

CMS preliminary
$\sqrt{s} = 7$ TeV
$L = 90$ pb$^{-1}$

- Signal: No evidence of $D^0 \rightarrow \mu^+\mu^-$ from D^{*-}
- Background is fitted to empirical function:
 $$f(\Delta M) = p_1 \times [(\Delta M - M_\pi)^{1/2} + p_2 \times (\Delta M - M_\pi)^{3/2}]$$
 - p_1 and p_2 are fit parameters and M_π is pion mass

Jose.Lazo-Flores@cern.ch
\(D^0 \rightarrow \mu^+\mu^- \) Upper Limit

- The upper limit on the branching fraction is determined by

\[
B(D^0 \rightarrow \mu^+\mu^-) \leq B(D^0 \rightarrow K^-\mu^+\nu) \times \frac{N(\mu\mu)}{N(K\mu\nu)} \times \frac{a(K\mu\nu)}{a(\mu\mu)} \times \frac{\epsilon_{\text{trig}}(K\mu\nu)}{\epsilon_{\text{trig}}(\mu\mu)} \times \frac{\epsilon_{\text{rec}}(K\mu\nu)}{\epsilon_{\text{rec}}(\mu\mu)}
\]

- Where:
 - \(\mathcal{B}(D^0 \rightarrow K^-\mu^+\nu) = (3.30 \pm 0.13) \times 10^{-2} \) is the normalization branching fraction (PDG)
 - \(N(\mu\mu) \) is the 90\% CL upper limit on the \(D^0 \rightarrow \mu^+\mu^- \) yield
 - \(N(K\mu\nu) \) is the number of \(D^0 \rightarrow K^-\mu^+\nu \) candidates
 - \(a \) and \(\epsilon \) are the acceptance and efficiency of the two modes
$D^0 \rightarrow \mu^+\mu^-$ Results

- Acceptance and efficiency ratios are determined with MC.
- Systematic uncertainties
 - Acceptance and efficiency
 - MC and data driven methods
 - Underestimated trigger efficiencies
 - Contamination from $D^0 \rightarrow K^{*-}(K^-\pi^0)\mu^+\nu$
 - PDG uncertainty for $D^0 \rightarrow K\mu\nu$

$\mathcal{B}(D^0 \rightarrow \mu^+\mu^-) \leq 5.4 \times 10^{-7}$ (90% CL)
Motivation:

Decays are heavily suppressed in the SM

- SM expectation is:
 - \(B(B_s^0 \rightarrow \mu^+\mu^-) = (3.23 \pm 0.27) \times 10^{-9} \)
 - \(B(B^0 \rightarrow \mu^+\mu^-) = (1.07 \pm 0.10) \times 10^{-10} \)

This is because:

- It requires a flavor-changing neutral current (FCNC) transition
- Decay is helicity suppressed by a factor of \((m_\mu/m_B)^2\)
- Internal quark annihilation within \(B\) meson
 - Reduces decay rate by additional factor of \((f_B/m_B)^2\)

These processes are excellent probes for new physics

- 2HDM enhancement: \(B \propto (\tan \beta)^4\)
- MSSM enhancement: \(B \propto (\tan \beta)^6\)
 - Constrains parameter regions
Analysis Overview

• **Signal signature**
 - Two muons from one decay vertex and nothing else
 - Long lived B
 - Well reconstructed secondary vertex
 - Momentum aligned with flight direction
 - Mass around the m_{B_s}

• **Backgrounds**
 - Two independent semileptonic B decays,
 - One semileptonic (B) decay and one misidentified hadron
 - Rare single B decays
 - Peaking, e.g. $B_s \rightarrow K^+K^-$
 - Non-peaking, e.g. $B_s \rightarrow K\mu+\nu$
 - Events with not well-reconstructed secondary vertices

⇒ High signal efficiency and high background reduction
Methodology

• **Measurement of the branching fraction relative to** normalization channel
 • Similar trigger and selection to reduce systematic uncertainties

\[
B(B_s^0 \to \mu^+ \mu^-; 95\%C.L.) = \frac{N(n_{obs}, n_B, n_S; 95\%C.L.)}{\varepsilon_{B_s^0} N_{B_s^0}} = \frac{N(n_{obs}, n_B, n_S)}{\varepsilon_{B_s^0} L \sigma(pp \to B_s^0)}
\]

\[
= \frac{N(n_{obs}, n_B, n_S)}{N(B^\pm \to J/\psi K^\pm)} \cdot \frac{A_{B_s^0} \varepsilon^{ana}_{B_s^0} \varepsilon^{\mu}_{B_s^0} \varepsilon^{trig}_{B_s^0}}{A_{B_s^0} \varepsilon^{ana}_{B_s^0} \varepsilon^{\mu}_{B_s^0} \varepsilon^{trig}_{B_s^0}} \cdot \frac{f_u}{f_s} B(B^+ \to J/\psi [\mu^+ \mu^-] K)
\]

• **Calibration/validation of MC:**
 • \(B^\pm \to J/\Psi K^\pm\) normalization with high statistics
 • \(B_s \to J/\Psi \Phi\) signal MC (p_T, isolation,...)

• **Analysis is done in two channels**
 • Barrel - both muons \(|\eta| < 1.4\)
 • Better signal/background ratio
 • Good mass resolution (36 MeV)
 • Endcap - at least one muon with \(|\eta| > 1.4\)
 • Add more statistics (\(\sigma(m) \approx 70\) MeV)
Event Selection: Vertex

- Discriminating variables
 - Pointing angle α_{3d}
 - B vertex fit quality χ^2/dof
 - Flight length significance $l_{3d}/\sigma(l_{3d})$
 - 3D impact parameter (δ_{3D}) and significance ($\delta_{3D}/\sigma(\delta_{3D})$)

- Selections optimized for best upper limit
- Frozen before unblinding
Event Selection: Isolation

- Primary vertex isolation, used to minimize MC/data discrepancies and maximize background rejection
 - For tracks in cone with $\Delta R < 0.7$ with $p_T > 0.9$ GeV
 - Associated to same PV or with $d_{ca} > 500$ μm if not associated with PV

$$I = \frac{p_\perp (B)}{p_\perp (B) + \sum_{trk} |p_\perp|}$$
Pileup Independence

- Determine selection efficiency vs N_{PV} in data
- 2011 dataset:
 - $\langle N_{PV} \rangle \approx 8$
 - $\text{RMS}(z) \approx 5.6 \text{ cm}$

$B^\pm \to J/\Psi K^\pm$

$B_s \to J/\Psi \Phi$

- In MC:
 - checked ε for
 - $N_{PV} < 6$
 - $N_{PV} > 10$

- No pileup dependance

August 13, 2012

Jose.Lazo-Flores@cern.ch
Measurement of $B^\pm \rightarrow J/\Psi K^\pm$

- Needed for the extraction of the branching fraction
- Same selection as for signal, plus
 - $3.0 < m(\mu\mu) < 3.2$ GeV
 - $p_T(\mu\mu) > 7$ GeV
 - $p_T(K) > 0.5$ GeV
- Fit pdf:
 - Signal: double Gaussian
 - Bkg: exponential + error function at 5.145 GeV for $B^0 \rightarrow J/\Psi K^* \rightarrow \mu^+\mu^-K^-\pi^+$ decays

<table>
<thead>
<tr>
<th></th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>0.162 ± 0.006</td>
<td>0.111 ± 0.006</td>
</tr>
<tr>
<td>ε_{tot}</td>
<td>0.00110 ± 0.00009</td>
<td>0.00032 ± 0.00004</td>
</tr>
<tr>
<td>N_{obs}</td>
<td>82712 ± 4146</td>
<td>23809 ± 1203</td>
</tr>
</tbody>
</table>
Summary

The signal windows for $B^0 \rightarrow \mu^+ \mu^-$ and $B^0_s \rightarrow \mu^+ \mu^-$ have been used. This result supersedes our previous measurement [1]. Stricter selection criteria have been applied, resulting in a better sensitivity and a higher expected signal.

Table: The event selection efficiency for signal events

<table>
<thead>
<tr>
<th>Variable</th>
<th>$B^0 \rightarrow \mu^+ \mu^-$ Barrel</th>
<th>$B^0_s \rightarrow \mu^+ \mu^-$ Barrel</th>
<th>$B^0 \rightarrow \mu^+ \mu^-$ Endcap</th>
<th>$B^0_s \rightarrow \mu^+ \mu^-$ Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{tot}</td>
<td>0.0029 ± 0.0002</td>
<td>0.0029 ± 0.0002</td>
<td>0.0016 ± 0.0002</td>
<td>0.0016 ± 0.0002</td>
</tr>
<tr>
<td>N_{signal}^{\exp}</td>
<td>0.24 ± 0.02</td>
<td>2.70 ± 0.41</td>
<td>0.10 ± 0.01</td>
<td>1.23 ± 0.18</td>
</tr>
<tr>
<td>N_{peak}^{\exp}</td>
<td>0.33 ± 0.07</td>
<td>0.18 ± 0.06</td>
<td>0.15 ± 0.03</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>N_{comb}^{\exp}</td>
<td>0.40 ± 0.34</td>
<td>0.59 ± 0.50</td>
<td>0.76 ± 0.35</td>
<td>1.14 ± 0.53</td>
</tr>
<tr>
<td>N_{total}^{\exp}</td>
<td>0.97 ± 0.35</td>
<td>3.47 ± 0.65</td>
<td>1.01 ± 0.35</td>
<td>2.45 ± 0.56</td>
</tr>
<tr>
<td>N_{obs}</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

The quoted errors include both statistical and systematic uncertainties. The median expected upper limits at 95% CL are 4×10^3 events.

Including cross-feed between the B^0 and B^0_s decays.

Figures

- **Barrel**: Dimuon invariant mass distributions in the barrel (left) and endcap (right) channels.
- **Endcap**: Similar to the barrel, but for the endcap channel.

The event selection efficiency for signal events is 0.208\%.
Upper Limit Results

Upper limit (95%CL)

<table>
<thead>
<tr>
<th>$\mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-})$</th>
<th>observed</th>
<th>expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(B^{0} \rightarrow \mu^{+}\mu^{-})$</td>
<td>7.7×10^{-9}</td>
<td>8.4×10^{-9}</td>
</tr>
<tr>
<td></td>
<td>1.8×10^{-9}</td>
<td>1.6×10^{-9}</td>
</tr>
</tbody>
</table>

Conclusions

- **Upper limit now approaching factor 2 of SM expectation**
- **Looking forward to 2012 dataset.**
- **Significant improvement**
 - EPS 2011: $\mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) < 1.9 \times 10^{-8}$
 - More/changed variables, e.g., better B vertex isolation
 - Improved sensitivity
 - Higher signal/background ratio
- **Well prepared for**
 - High instantaneous lumi (trigger)
 - High pileup (tracking and vertexing)
LHC Combined Results

- **LHC combination**
 - \(\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \leq 4.2(3.7) \times 10^{-9} \) at 95(90)% CL
 - Combined results from ATLAS, CMS and LHCb
 - Getting close to the SM expectation
 - \(\mathcal{B}(B^0 \to \mu^+ \mu^-) \leq 0.81(0.67) \times 10^{-9} \) at 95(90)% CL
 - Combined results from CMS and LHCb

Graphs:
- **ATLAS+CMS+LHCb**
- **CMS+LHCb**

References:
- CMS PAS BPH-12-009
- LHCb-CONF-2012-017
- ATLAS-COM-CONF-2012-090
Interpretation Examples

- Empty region due to previous upper limits and other published data

- Strongest impact at large $\tan \beta$

August 13, 2012

Jose.Lazo-Flores@cern.ch
Conclusion

- Shown here are the results of FCNC decays
 - $D^0 \to \mu^+\mu^-$ and $B_{s(d)} \to \mu^+\mu^-$
 - $\mathcal{B}(D^0 \to \mu^+\mu^-) \leq 5.4 \times 10^{-7} (90\% \text{ CL})$
 - $\mathcal{B}(B_{s(d)} \to \mu^+\mu^-) \leq 7.7 \times 10^{-9} (95\% \text{ CL})$
 - $\mathcal{B}(B^0 \to \mu^+\mu^-) \leq 1.8 \times 10^{-9} (95\% \text{ CL})$
 - LHC combination
 - $\mathcal{B}(B_{s}^0 \to \mu^+\mu^-) \leq 4.2 \times 10^{-9} (95\% \text{ CL})$
 - $\mathcal{B}(B^0 \to \mu^+\mu^-) \leq 0.81 \times 10^{-9} (95\% \text{ CL})$
- CMS is producing high quality results
 - More results to come from 2011 data
 - Analysis of 2012 data ongoing
B_s candidate event
Kinematics: Simulation vs Data

August 13, 2012
Vertexing

CMS, 5 fb$^{-1}$ \(\sqrt{s} = 7 \) TeV

- **B$^0 \to J/\psi K^+$**
 - Data
 - MC simulation

- **B$^+ \to \pi^- K^+$**
 - Data
 - MC simulation

- **B$^0 \to J/\psi \phi$**
 - Data
 - MC simulation

- **B$^+ \to \pi^- K^+$**
 - Data
 - MC simulation

flight length sign.

B vertex \(\chi^2 \)/dof

3D pointing angle

3d impact param.

August 13, 2012

Jose.Lazo-Flores@cern.ch
Isolation

Candidates

CMS, 5 fb⁻¹ \(\sqrt{s} = 7 \text{ TeV} \)

B⁺ → J/ψ K⁺
- Data
- MC simulation

\(\eta \) close trk

N_{\text{close}}

Candidates

CMS, 5 fb⁻¹ \(\sqrt{s} = 7 \text{ TeV} \)

B⁺ → J/ψ K⁺
- Data
- MC simulation

3D impact param. sign.

Candidates

CMS, 5 fb⁻¹ \(\sqrt{s} = 7 \text{ TeV} \)

B⁺ → J/ψ K⁺
- Data
- MC simulation

August 13, 2012

Jose.Lazo-Flores@cern.ch
Blinded Results

- **Background** = combinatorial + rare (MC shape)
 - Constant shape assumed for combinatorial
- **Combinatorial events in signal windows:**
 - Subtract rate events from sidebands
 - Scale remaining events to the difference widths of the regions