Search for $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ in CMS (2011 dataset)

Urs Langenegger
(PSI)

on behalf of the CMS collaboration
2012/02/28
Motivation: Search for New Physics

- Decays **highly suppressed** in Standard Model (Buras 2010)
 - effective FCNC, helicity suppression
 - SM expectation:
 \[
 \begin{align*}
 \mathcal{B}(B^0_s \rightarrow \mu^+\mu^-) &= (3.2 \pm 0.2) \times 10^{-9} \\
 \mathcal{B}(B^0 \rightarrow \mu^+\mu^-) &= (1.0 \pm 0.1) \times 10^{-10}
 \end{align*}
 \]
 - Cabibbo-enhancement \((|V_{ts}| > |V_{td}|)\) of \(B^0_s \rightarrow \mu^+\mu^-\) over \(B^0 \rightarrow \mu^+\mu^-\) only in MFV models

- Sensitivity to new physics
 - 2HDM: \(\mathcal{B} \propto (\tan \beta)^4, m_{H^+}\); MSSM: \(\mathcal{B} \propto (\tan \beta)^6\)
 - sensitivity to extended Higgs boson sectors
 - Constraints on parameter regions

- \(B^0_s \rightarrow \mu^+\mu^-\) (and \(B^0 \rightarrow \mu^+\mu^-\)) considered as golden channel(s)
 - high sensitivity to new physics
 - (very) small theoretical uncertainties
 - comparable in sensitivity to \(\mu \rightarrow e\gamma, B \rightarrow X\nu\bar{\nu}\)

Urs Langenegger
Search for \(B^0_s \rightarrow \mu^+\mu^-\) and \(B^0 \rightarrow \mu^+\mu^-\) in CMS (2012/02/28)
State of the art

- At the Tevatron

<table>
<thead>
<tr>
<th>Upper limit</th>
<th>$B^0_s \rightarrow \mu^+\mu^-$</th>
<th>$B^0 \rightarrow \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>5.1×10^{-8}</td>
<td>n/a</td>
</tr>
<tr>
<td>CDF2</td>
<td>4.0×10^{-8}</td>
<td>6.0×10^{-9}</td>
</tr>
</tbody>
</table>

1) 6.1 fb^{-1}, PL, B693, 539
2) 7 fb^{-1}, PRL, 107, 191801

- At the LHC:

<table>
<thead>
<tr>
<th>Upper limit</th>
<th>$B^0_s \rightarrow \mu^+\mu^-$</th>
<th>$B^0 \rightarrow \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS3</td>
<td>1.9×10^{-8}</td>
<td>3.6×10^{-9}</td>
</tr>
<tr>
<td>LHCb4</td>
<td>1.4×10^{-8}</td>
<td>3.2×10^{-9}</td>
</tr>
<tr>
<td>CMS + LHCb</td>
<td>1.1×10^{-8}</td>
<td>n/a</td>
</tr>
</tbody>
</table>

3) 1.1 fb^{-1}, PRL, 107, 191802
4) 0.4 fb^{-1}, PL, B708, 55

(all upper limits at 95%CL)

- CDF2 also has $\mathcal{B}(B^0_s \rightarrow \mu^+\mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}$

Urs Langenegger
Search for $B^0_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/02/28)
A ‘new’ analysis

- Analysis was performed **blind**
 - reblinded old data \(1.1 \text{ fb}^{-1}\)
 - total amount of data: \(4.9 \text{ fb}^{-1}\)

- Significant analysis modifications
 - tighter muon identification \((3 \times \text{ smaller fake rate})\)
 - isolation variables
 - primary vertex isolation (redefined)
 - \(B\) vertex isolation: distance of closest track (redefined)
 - \(B\) vertex isolation: track counting (new)
 - non-monotonic changes
 - 3D impact parameter and its significance (new)

⇒ Better analysis
 - pileup independence up to \(N_{PV} \approx 30\)
 - higher sensitivity
 - larger signal/background

Analysis is (still) cut-n-count

Urs Langenegger
Search for \(B^0_s \rightarrow \mu^+\mu^-\) and \(B^0 \rightarrow \mu^+\mu^-\) in CMS (2012/02/28)
Analysis overview

- **Signal** $B_s^0 \rightarrow \mu^+\mu^-$
 - two muons from one decay vertex
 - well reconstructed secondary vertex
 - momentum aligned with flight direction
 - long-lived B
 - mass around $m_{B_s^0}$

- **Background**
 - two semileptonic (B) decays (gluon splitting)
 - one semileptonic (B) decay and one misidentified hadron
 - rare single B decays
 - peaking, e.g. $B_s^0 \rightarrow K^+K^-$
 - non-peaking, e.g. $B_s^0 \rightarrow K^-\mu^+\nu$
 - mass resolution
 - not well-reconstructed secondary vertex
 - pointing angle

⇒ **High signal efficiency and high background reduction**
Methodology

- **Measurement of** $B_s^0 \rightarrow \mu^+\mu^-$ relative to normalization channel:
 - similar trigger and selection to reduce systematic uncertainties

\[
\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-; 95\%C.L.) = \frac{N(n_{\text{obs}}, n_B, n_S; 95\%C.L.)}{\varepsilon_{B_s^0} N_{B_s^0}} = \frac{N(n_{\text{obs}}, n_B, n_S)}{\varepsilon_{B_s^0} \mathcal{L} \sigma(pp \rightarrow B_s^0)} = \frac{N(n_{\text{obs}}, n_B, n_S)}{N(B^\pm \rightarrow J/\psi K^\pm)} A_{B_s^0} \varepsilon_{B_s^0} A_{B^+} \varepsilon_{B^+} A_{B^0} \varepsilon_{B^0} \frac{f_u}{f_s} B(B^+ \rightarrow J/\psi [\mu^+\mu^-] K)
\]

- **Calibration/validation of MC:**
 - $B^\pm \rightarrow J/\psi K^\pm$ normalization with high statistics
 - $B_s^0 \rightarrow J/\psi \phi$ B_s^0 signal MC (p_\perp, isolation, . . .)

- **Analysis in two channels**
 - **barrel (both muons $|\eta| < 1.4$):**
 - better signal/background ratio
 - good mass resolution (36 MeV)
 - **endcap (at least one muon with $|\eta| > 1.4$):**
 - add more statistics [$\sigma(m) \approx 70$ MeV]

⇒ **Blind analysis**

Urs Langenegger
Search for $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/02/28)
The CMS detector

- Design prioritization
 - lepton ID → muons
 - b/τ tagging → tracking
 - jets and E_T

<table>
<thead>
<tr>
<th>Component</th>
<th>Characteristics</th>
<th>Resolutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>3/2 Si layers</td>
<td>$\delta z \approx 20 , \mu m$, $\delta \phi \approx 10 , \mu m$</td>
</tr>
<tr>
<td>Tracker</td>
<td>10/12 Si strips</td>
<td>$\delta (p_{\perp})/p_{\perp} \approx 1%$</td>
</tr>
<tr>
<td>ECAL</td>
<td>PbWO$_4$</td>
<td>$\delta E/E \approx 3% / \sqrt{E} \oplus 0.5%$</td>
</tr>
<tr>
<td>HCAL (B)</td>
<td>Brass/Sc, $> 7.2 \lambda$</td>
<td>$\delta E/E \approx 100 \sqrt{E}%$</td>
</tr>
<tr>
<td>HCAL (F)</td>
<td>Fe/Quartz</td>
<td>$\delta (E_T) \approx 0.98 \sqrt{\sum E_T}$</td>
</tr>
<tr>
<td>Magnet</td>
<td>3.8 T solenoid</td>
<td>$\delta (p_{\perp})/p_{\perp} \approx 10%$ (STA)</td>
</tr>
<tr>
<td>Muons</td>
<td>DT/CSC + RPC</td>
<td></td>
</tr>
</tbody>
</table>

Weight | 12’500 t
Length | 21.6 m
Diameter | 15 m
Magnetic field | 3.8 T

Tracking resolution:
impact parameter $\approx 15 \, \mu m$
Muon reconstruction

- Large muon acceptance $|\eta| < 2.4$
 - drift tubes
 - cathode strip chambers
 - resistive plate chambers
- 3 muon reconstruction algorithms
 - standalone muon: in muon system (trigger ingredient)
 - global muon (‘GM’): outside-in standalone muon \rightarrow to inner track
 - tracker muon (‘TM’): inside-out inner track \rightarrow muon detector

Muon misidentification

$$\varepsilon(\mu|\pi) \leq 0.1\%$$
$$\varepsilon(\mu|K) \leq 0.1\%$$
$$\varepsilon(\mu|p) \leq 0.05\%$$

measured in data:

$D^*+ \rightarrow D^0\pi^+_s \rightarrow K^-\pi^+\pi^+_s$
$\Lambda \rightarrow p\pi^-$
Trigger

- Dimuon trigger
 - L1 (hardware) trigger
 - High-level trigger
 - full tracking and vertexing
 - requirements tightened over time

- HLT $B_s^0 \rightarrow \mu^+ \mu^-$
 - inv. mass $4.8 < m_{\mu^+ \mu^-} < 6.0$ GeV
 - dimuon vertex $\mathcal{P}(\chi^2, \text{dof}) > 0.5\%$
 - distance of closest approach $d_{ca} < 0.5$ cm
 - single muon $p_\perp > 4$ GeV, dimuon $p_\perp > 3.9(5.9)$ GeV in barrel (endcap)

- HLT $B^\pm \rightarrow J/\psi K^\pm$ and $B_s^0 \rightarrow J/\psi \phi$
 - single muon $p_\perp > 4$ GeV, dimuon $p_\perp > 6.9$ GeV
 - distance of closest approach among muons $d_{ca} < 0.5$ cm
 - invariant dimuon mass $2.9 < m_{\mu^+ \mu^-} < 3.3$ GeV
 - pointing angle $\cos \alpha_{xy} > 0.9$ and dimuon vertex $\mathcal{P}(\chi^2/\text{dof}) > 15\%$
 - ‘displaced’ J/ψ: flight length significance $\ell/\sigma(\ell) > 3$
3D vertexing

- All silicon tracker
 - high granularity, low occupancy
 - very well described by MC simulation

- Pixel detector
 - $100 \times 150 \mu m^2$ pixel size
 - substantial charge sharing
 - excellent resolution

⇒ Essential in high-pileup environment!
Candidate selection

Search for $B^0_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/02/28)
Two analyses

- **1. Search analysis** $B \to \mu^+\mu^-$ in two channels
 - **barrel** (both muons $|\eta| < 1.4$):
 - **endcap** (≥ 1 muon with $|\eta| > 1.4$):

- **2. Validation analysis** in one channel
 - $B^{\pm} \to J/\psi K^{\pm}$ and $B^0_s \to J/\psi \phi$ (and dimuons)

- **Overlays of data and MC simulation** (selection summary on p. 20)
 - ‘all other’ selection criteria are applied
 - MC signal
 - data background in sidebands ($4.9 < m < 5.2$ GeV and $5.45 < m < 5.9$ GeV)

Urs Langenegger

Search for $B^0_s \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ in CMS (2012/02/28)
Signal selection: vertexing

- Choose one primary vertex
 - longitudinal impact parameter (z position)
 - refit without signal tracks

- Discriminating variables
 - pointing angle α_{3D}
 - B vertex fit quality χ^2/dof
 - flight length significance $\ell_{3D}/\sigma(\ell_{3D})$
 - 3D impact parameter δ_{3D} and significance $\delta_{3D}/\sigma(\delta_{3D})$
Primary vertex isolation: Relative dimuon isolation

- 'classic' variable

\[I = \frac{p_\perp(\mu^+\mu^-)}{p_\perp(\mu^+\mu^-) + \sum_{\Delta R < 0.7} p_\perp} \]

\[\Delta \] in cone around dimuon momentum

\[\Delta \] for tracks in cone with \(\Delta R < 0.7 \)

- with \(p_\perp > 0.9 \) GeV
- either associated to same PV as candidate
 or with \(d_{ca} < 500 \) \(\mu \)m and not associated to another PV

parameters tuned to minimize data/MC discrepancy \((B^\pm \rightarrow J/\psi K^\pm) \) and maximize dimuon bg rejection
• **B vertex isolation:**
 - based on tracks reconstructed in the proximity of the secondary B vertex
 - avoid pileup dependence:
 - either tracks associated to no primary vertex
 - or tracks associated to same vertex as B candidate
 - d_{ca}^0: distance of closest track to B vertex
 - $N_{\text{close}}^{\text{trk}}$: number of close tracks
 - $d_{ca} < 300 \, \mu m$
 - $p_{\perp} > 0.5 \, \text{GeV}$

• **Validation of B_s^0 MC:**
 - $B_s^0 \rightarrow J/\psi \phi$!
 - (see below)

Urs Langenegger

Search for $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ in CMS (2012/02/28)
Normalization and control samples

- Normalization sample
 - $B^\pm \rightarrow J/\psi K^\pm$
 - validation of $B^+\MC$

- Control sample
 - $B_s^0 \rightarrow J/\psi \phi$
 - validation of $B_s^0\signal\MC$

- Combine J/ψ with 1 or 2 ‘kaons’
 - $3.0 < m(\mu\mu) < 3.2\GeV$
 - $p_\perp(\mu\mu) > 7\GeV$
 - $p_\perp(K) > 0.5\GeV$
 - additional selection for ϕ
 - $0.995 < m(\mu\mu) < 1.045\GeV$
 - $\Delta R(K, K) < 0.25$
 - all 3 (4) tracks used in vertexing

- Comparison of (sideband-subtracted) data and MC simulation
 - MC simulation normalized to data
Kinematics

CMS, 4.9 fb⁻¹ Preliminary $\sqrt{s} = 7$ TeV

- **Data**
- $B^0 \to J/\psi K^*(MC)$

Leading muon p_{\perp}

Sub-leading muon p_{\perp}

$B \eta$

$B \ p_{\perp}$

CMS, 4.9 fb⁻¹ Preliminary $\sqrt{s} = 7$ TeV

- **Data**
- $B^0 \to J/\psi \phi (MC)$

Urs Langenegger

Search for $B^0_s \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ in CMS (2012/02/28)
Selection efficiency (uncertainty)

- Determine selection efficiency in
 - data
 - MC simulation

 with respect to ‘all other selection requirements’, e.g. for $B^\pm \to J/\psi K^\pm$:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Selection</th>
<th>MC</th>
<th>Data</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>muon p_\perp</td>
<td>$p_\perp > 4.0$ GeV</td>
<td>0.927 ± 0.001</td>
<td>0.926 ± 0.001</td>
<td>−0.002 ± 0.001</td>
</tr>
<tr>
<td>pointing angle</td>
<td>$\alpha_{3D} < 0.0500$ rad</td>
<td>0.994 ± 0.000</td>
<td>0.995 ± 0.000</td>
<td>+0.000 ± 0.000</td>
</tr>
<tr>
<td>vertex fit</td>
<td>$\chi^2/dof < 2.0$</td>
<td>0.936 ± 0.001</td>
<td>0.928 ± 0.001</td>
<td>−0.009 ± 0.001</td>
</tr>
<tr>
<td>impact parameter</td>
<td>$\delta_{3D} < 0.008$</td>
<td>0.972 ± 0.001</td>
<td>0.972 ± 0.001</td>
<td>+0.001 ± 0.001</td>
</tr>
<tr>
<td>impact param. sign.</td>
<td>$\delta_{3D}/\sigma(\delta_{3D}) < 2.000$</td>
<td>0.959 ± 0.001</td>
<td>0.944 ± 0.001</td>
<td>−0.015 ± 0.001</td>
</tr>
<tr>
<td>flight length sig.</td>
<td>$\ell_{3d}/\sigma(\ell_{3d}) > 15.0$</td>
<td>0.923 ± 0.001</td>
<td>0.926 ± 0.001</td>
<td>+0.004 ± 0.001</td>
</tr>
<tr>
<td>isolation</td>
<td>$I > 0.80$</td>
<td>0.893 ± 0.001</td>
<td>0.871 ± 0.001</td>
<td>−0.025 ± 0.002</td>
</tr>
<tr>
<td>close tracks</td>
<td>$N_{trk} < 2$</td>
<td>0.978 ± 0.000</td>
<td>0.975 ± 0.000</td>
<td>−0.003 ± 0.001</td>
</tr>
<tr>
<td>d_{ca}^0</td>
<td>$d_{ca}^0 > 0.015$ cm</td>
<td>0.917 ± 0.001</td>
<td>0.929 ± 0.001</td>
<td>+0.013 ± 0.001</td>
</tr>
</tbody>
</table>

⇒ Systematic uncertainty from (quadr.) sum of relative differences

→ $B^\pm \to J/\psi K^\pm$: 4%
 (largest single deviation: 2.5% from isolation)

→ $B_s^0 \to J/\psi \phi$: 3%
 (largest single deviation: 1.5% from B vertex χ^2/dof)

→ idem for signal selection efficiency uncertainty
Pileup dependence?
Pileup independence

- Determine selection efficiency vs N_{PV} in data
 - 2011 dataset:
 - $\langle N_{PV} \rangle \approx 8$
 - $\text{RMS}(z) \approx 5.6 \text{ cm}$

$B^{\pm} \rightarrow J/\psi K^{\pm}$

$B_{s}^{0} \rightarrow J/\psi \phi$

- MC: also checked ε for
 - $N_{PV} < 6$
 - $N_{PV} > 10$

\Rightarrow no pileup dependence
Search Analysis
Selection for search analysis

- Random grid optimization
 - 14 variables included in 1.4×10^6 runs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Barrel</th>
<th>Endcap</th>
<th>units</th>
<th>comparison to old analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{\perp \mu,1}$</td>
<td>4.5</td>
<td>4.5</td>
<td>GeV</td>
<td>same</td>
</tr>
<tr>
<td>$p_{\perp \mu,2}$</td>
<td>4.0</td>
<td>4.2</td>
<td>GeV</td>
<td>tighter in endcap</td>
</tr>
<tr>
<td>$p_{\perp B}$</td>
<td>6.5</td>
<td>8.5</td>
<td>GeV</td>
<td>tighter in endcap</td>
</tr>
<tr>
<td>ℓ_{3d}</td>
<td>1.5</td>
<td>1.5</td>
<td>cm</td>
<td>tighter</td>
</tr>
<tr>
<td>$\alpha <$</td>
<td>0.050</td>
<td>0.030</td>
<td>rad</td>
<td>looser</td>
</tr>
<tr>
<td>$\chi^2/dof <$</td>
<td>2.2</td>
<td>1.8</td>
<td></td>
<td>looser</td>
</tr>
<tr>
<td>$\ell_{3d}/\sigma(\ell_{3d}) >$</td>
<td>13.0</td>
<td>15.0</td>
<td></td>
<td>looser</td>
</tr>
<tr>
<td>$I >$</td>
<td>0.80</td>
<td>0.80</td>
<td>cm</td>
<td>redefined</td>
</tr>
<tr>
<td>$d_{ca} ^0$</td>
<td>0.015</td>
<td>0.015</td>
<td>cm</td>
<td>redefined</td>
</tr>
<tr>
<td>$\delta_{3D} <$</td>
<td>0.008</td>
<td>0.008</td>
<td>cm</td>
<td>new</td>
</tr>
<tr>
<td>$\delta_{3D}/\sigma(\delta_{3D}) <$</td>
<td>2.000</td>
<td>2.000</td>
<td>cm</td>
<td>new</td>
</tr>
<tr>
<td>$N_{trk} <$</td>
<td>2</td>
<td>2</td>
<td>tracks</td>
<td>new</td>
</tr>
</tbody>
</table>

- Total efficiency \times acceptance

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \rightarrow \mu^+ \mu^-$</td>
<td>0.0029 ± 0.0002</td>
<td>0.0016 ± 0.0002</td>
</tr>
<tr>
<td>$B^\pm \rightarrow J/\psi K^\pm$</td>
<td>0.00110 ± 0.00009</td>
<td>0.00032 ± 0.00004</td>
</tr>
</tbody>
</table>
Dimuon mass distribution (blinded)

- Low background (sidebands shown only)

CMS, 4.9 fb$^{-1}$ Preliminary \(\sqrt{s} = 7 \text{ TeV} \)

- Barrel
 - \(B_s^0 \) signal window
 - \(B^0 \) signal window

- Endcap
 - \(B_s^0 \) signal window
 - \(B^0 \) signal window

Urs Langenegger

Search for \(B_s^0 \rightarrow \mu^+\mu^- \) and \(B^0 \rightarrow \mu^+\mu^- \) in CMS (2012/02/28)
Measurement of $B^\pm \to J/\psi K^\pm$

- Use identical selection as for dimuon, plus
 - $3.0 < m(\mu\mu) < 3.2$ GeV
 - $p_\perp(\mu\mu) > 7$ GeV, $p_\perp(K) > 0.5$ GeV
 - all tracks used in vertexing

- Fit function
 - signal: double Gaussian
 - background: exponential + error function
 partially reconstructed B decays
 $B^0 \to J/\psi K^* \to \mu^+\mu^- K^- (\pi^+)$

<table>
<thead>
<tr>
<th></th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>0.162 ± 0.006</td>
<td>0.111 ± 0.006</td>
</tr>
<tr>
<td>ε_{tot}</td>
<td>0.00110 ± 0.00009</td>
<td>0.00032 ± 0.00004</td>
</tr>
<tr>
<td>N_{obs}</td>
<td>82712 ± 4146</td>
<td>23809 ± 1203</td>
</tr>
</tbody>
</table>

- Systematic error on yield: 5%
 - variation of
 background pdf
 - vary signal pdf
 - mass-constrain dimuons to J/ψ (better resolution)
Rare backgrounds

- Rare backgrounds
 - CKM-suppressed semileptonic decays
 - e.g. $B_s^0 \rightarrow K^- \mu^+ \nu$, one fake muon
 - large B, but mostly at low masses
 - ‘peaking’ hadronic decays
 - e.g. $B_s^0 \rightarrow K^- K^+$, two fake muons
 - Normalization to B^+ yield in data
 \[
 N(X) = \frac{\mathcal{B}(Y \rightarrow X)}{\mathcal{B}(B^+ \rightarrow J/\psi K^\pm)} \frac{f_Y \varepsilon_{\text{tot}}(X)}{f_u \varepsilon_{\text{tot}}(B^+)} N_{\text{obs}}(B^+) \]
 - weighting with misid rate f (or ε_μ) and $\varepsilon_{\text{trig}}$

- Note
 - B^0 more affected than B_s^0
 - endcap more diluted than barrel
 - lower efficiency

- Systematic error varies
 - branching fraction uncertainties
 - $f_u/f_s = 0.267 \pm 0.021$ [LHCb, arxiv:1111.2357]
Systematic uncertainties

- **Acceptance:**
 - mixture of production processes
 - gluon fusion
 - flavor excitation
 - gluon splitting
 - half of acceptance variation
 - Studied variables sensitive to mixture
 - muon vs B candidate:
 - $\Delta R(B, \mu)$
 - $p_\perp(\mu)$

- **Selection efficiency**
 - from data/MC comparisons
 - quadratic sum for all selection criteria

- **Muon trigger and efficiency**
 - full variation, for thresholds $4 < p_\perp < 8$ GeV
 - efficiency difference between data and MC
Cross checks

- Determination of $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi)/\mathcal{B}(B^\pm \rightarrow J/\psi K^\pm)$
 - barrel vs. endcap
 - B^+ fitting
 - consistent definitions
 - acceptance
 - efficiency
 (different number of daughters)

- Inverted isolation sample ($I < 0.7$, not blinded)
 - comparison of prediction vs. observation
 - validation of rare backgrounds
 - background interpolation

- Stability vs. time (HLT changes)
 - yields (dimuons, normalization and control sample)
 - yield ratios
Results

Urs Langenegger

Search for $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/02/28)
Upper limit calculation

- **Methodology**
 - CL$_s$
 - Feldman-Cousins
 - statistical model:

\[
\begin{align*}
N_s^B & \sim \text{Pois}(\tau_s^B \nu_b^B + \nu_{s,rare}^B + P_{ss}^B \mu_s \nu_s^B + P_{sd}^B \mu_d \nu_d^B) \\
N_d^B & \sim \text{Pois}(\tau_d^B \nu_b^B + \nu_{d,rare}^B + P_{ds}^B \mu_s \nu_s^B + P_{dd}^B \mu_d \nu_d^B)
\end{align*}
\]

with $(i = s, d)$

- τ_i^B \hspace{1cm} Ratio of $(B^0_i \rightarrow \mu\mu)$-signal window size to size of background window
- $\nu_{i,rare}^B$ \hspace{1cm} Expected number of rare background in $(B^0_i \rightarrow \mu\mu)$-signal window.
- ν_i^B \hspace{1cm} Expected number of reconstructed $(B^0_i \rightarrow \mu\mu)$ decays in barrel region assuming the SM
- P_{ij}^B \hspace{1cm} Probability for a reconstructed $B^0_j \rightarrow \mu\mu$ decay to be in $(B^0_i \rightarrow \mu\mu)$-signal window.
- μ_i \hspace{1cm} Signal strength of $B^0_i \rightarrow \mu\mu$, that is the ratio of true branching ratio to SM branching ratio.

- **Systematic error on cross feed** P_{ij}^B
 - mass scale and resolution
 - measure $J/\psi \rightarrow \mu^+\mu^-$, $B_s^0 \rightarrow \mu^+\mu^-$, $\Upsilon(1S) \rightarrow \mu^+\mu^-$
 - compare MC resolution (and position) with prediction (interpolation)
Summary of systematic errors

- Systematic uncertainties propagated into upper limit calculation
 all errors below in %

<table>
<thead>
<tr>
<th>Category</th>
<th>Uncertainty</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_s/f_u</td>
<td>production ratio of u and s quarks</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>acceptance</td>
<td>production processes</td>
<td>3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>P_{ij}^B</td>
<td>mass scale and resolution</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>efficiency (signal)</td>
<td>discrepancies data/MC simulation</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>efficiency (normalization)</td>
<td>discrepancies data/MC simulation</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>efficiency (normalization)</td>
<td>kaon track efficiency</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>efficiency</td>
<td>trigger</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>efficiency</td>
<td>muon identification</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>normalization</td>
<td>fit pdf</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>background</td>
<td>shape of combinatorial background</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>background</td>
<td>rare decays</td>
<td>20.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Expectations and Observation

<table>
<thead>
<tr>
<th>Variable</th>
<th>$B^0 \rightarrow \mu^+\mu^-$ Barrel</th>
<th>$B^0_s \rightarrow \mu^+\mu^-$ Barrel</th>
<th>$B^0 \rightarrow \mu^+\mu^-$ Endcap</th>
<th>$B^0_s \rightarrow \mu^+\mu^-$ Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>0.24 ± 0.02</td>
<td>2.70 ± 0.41</td>
<td>0.10 ± 0.01</td>
<td>1.23 ± 0.18</td>
</tr>
<tr>
<td>Combinatorial bg</td>
<td>0.40 ± 0.34</td>
<td>0.59 ± 0.50</td>
<td>0.76 ± 0.35</td>
<td>1.14 ± 0.53</td>
</tr>
<tr>
<td>Peaking bg</td>
<td>0.33 ± 0.07</td>
<td>0.18 ± 0.06</td>
<td>0.15 ± 0.03</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>Sum</td>
<td>0.97 ± 0.35</td>
<td>3.47 ± 0.65</td>
<td>1.01 ± 0.35</td>
<td>2.45 ± 0.56</td>
</tr>
<tr>
<td>Observed</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Barrel

CMS, 4.9 fb$^{-1}$ Preliminary $\sqrt{s} = 7$ TeV

Endcap

CMS, 4.9 fb$^{-1}$ Preliminary $\sqrt{s} = 7$ TeV

Urs Langenegger

Search for $B^0_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/02/28)
Results: upper limits

- Upper limit on $\mathcal{B}(B^0_s \rightarrow \mu^+\mu^-)$ and $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-)$

<table>
<thead>
<tr>
<th>upper limit (95%CL)</th>
<th>observed</th>
<th>(median) expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(B^0_s \rightarrow \mu^+\mu^-)$</td>
<td>7.7×10^{-9}</td>
<td>8.4×10^{-9}</td>
</tr>
<tr>
<td>$\mathcal{B}(B^0 \rightarrow \mu^+\mu^-)$</td>
<td>1.8×10^{-9}</td>
<td>1.6×10^{-9}</td>
</tr>
</tbody>
</table>

- p-values (for background-only hypotheses)

<table>
<thead>
<tr>
<th>p-values</th>
<th>background only</th>
<th>SM cross feed</th>
<th>floating cross feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(B^0_s \rightarrow \mu^+\mu^-)$</td>
<td>0.06 (1.5σ)</td>
<td>0.07 (1.5σ)</td>
<td>0.11 (1.2σ)</td>
</tr>
<tr>
<td>$\mathcal{B}(B^0 \rightarrow \mu^+\mu^-)$</td>
<td>0.11 (1.2σ)</td>
<td>0.29 (0.6σ)</td>
<td>0.24 (0.7σ)</td>
</tr>
</tbody>
</table>

Urs Langenegger
Search for $B^0_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/02/28)
Interpretation examples

- Empty region due to previous upper limit and other published data

\[m_0 \text{ vs } \tan \beta \text{ (CMSSM prediction for } B_s \rightarrow \mu^+\mu^-) \]
\[m_0 \text{ vs } \tan \beta \text{ (NUHM prediction for } B_s \rightarrow \mu^+\mu^-) \]

⇒ strongest impact at large \(\tan \beta \)
Interpretation examples (II)

- χ^2 difference

$$\Delta \chi^2$$

- 'best' fit for CMSSM

$$\Delta \chi^2$$

CMS Moriond 2012
CMS+LHCb Summer 2011

\[C M S B (B^0_s \rightarrow \mu^+ \mu^-) \]

95%CL
68%CL

MasterCode
(arXiv:1112.3564)
Conclusions

- Search for $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in 2011 dataset

<table>
<thead>
<tr>
<th>upper limit (95%CL)</th>
<th>observed</th>
<th>expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-)$</td>
<td>7.7×10^{-9}</td>
<td>8.4×10^{-9}</td>
</tr>
<tr>
<td>$\mathcal{B}(B^0 \rightarrow \mu^+\mu^-)$</td>
<td>1.8×10^{-9}</td>
<td>1.6×10^{-9}</td>
</tr>
</tbody>
</table>

- Significant improvement
 - EPS 2011: $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 1.9 \times 10^{-8}$
 - more/changed variables,
 e.g., better B vertex isolation
 - improved sensitivity
 - higher signal/background ratio

- Upper limit now approaching factor 2 of SM expectation

- Looking forward to 2012 dataset. Well prepared for
 high instantaneous lumi (trigger)
 high pileup (tracking and vertexing)