Detection of SUSY Signals in Stau-Neutralino Coannihilation at the LHC
- Finger Print of CDM -

R. Arnowitt,1) A. Aurisano,1)* B. Dutta,1) T. Kamon,1)
V. Khotilovich,1)* N. Kolev,2) P. Simeon,1)**
D. Toback,1) P. Wagner1)*

1) Department of Physics, Texas A&M University
2) Department of Physics, Regina University, Canada
* Graduate Student ** Undergraduate Student

The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions
Irvine, California, USA
June 12-17, 2006
$E_T^{\text{miss}} + 2j + 2\tau$ Analysis (II)

$p_T^{\text{vis}} > 40, 20 \text{ GeV}$

$M_{\text{max}} = 78.7 \text{ GeV}$

$p_T^{\text{vis}} > 40, 40 \text{ GeV}$

OS–LS counts (10 fb$^{-1}$) for $M_{\tau\tau} < 100$ GeV:
- Top : 6 counts
- W+jets : 1 count
- SUSY : 125 counts

How to Establish the Discovery

[1] $N_{\text{OS–LS}}$ (Number of OS–LS counts)

[2] Clear peak (M_{peak}) and end-point (M_{max}) in di-tau mass distribution for OS–LS pairs

[3] M_{peak} is used to determine ΔM

$p_T^{\tau} > 20 \text{ GeV}$ is essential!
A small ΔM can be detected in first few years of LHC.

[Assumption] The gluino mass is measured with $\delta M / M_{\text{gluino}} = \pm 5\%$ in a separate analysis.
We extract ΔM from M_{peak}.

I. $\delta M_{\text{peak}} = \text{r.m.s}(M_{\text{peak}}) / \sqrt{N_{\text{OS-LS}}}$

II. $\delta M/M_{\text{gluino}} = \pm 5\%$

$\Delta M = 10 \pm 1.2^{+1.4}_{-1.2}$ GeV (10 fb$^{-1}$)
Reach in $m_{1/2}$?

With 100 fb^{-1}, the LHC could probe $m_{1/2}$ up to $\sim 700 \text{ GeV}$.
Appendix 1: Reference Points

\[m_{1/2} = 360 \text{ GeV} \]

\[M_{\text{gluino}} = 830 \text{ GeV} \]

<table>
<thead>
<tr>
<th>(m_0)</th>
<th>210</th>
<th>212</th>
<th>215</th>
<th>217</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{g})</td>
<td>831</td>
<td>831</td>
<td>831</td>
<td>831</td>
<td>832</td>
</tr>
<tr>
<td>(\tilde{u}_L)</td>
<td>764</td>
<td>764</td>
<td>765</td>
<td>765</td>
<td>766</td>
</tr>
<tr>
<td>(\tilde{u}_R)</td>
<td>740</td>
<td>740</td>
<td>741</td>
<td>741</td>
<td>742</td>
</tr>
<tr>
<td>(\tilde{t}_2)</td>
<td>744</td>
<td>744</td>
<td>744</td>
<td>745</td>
<td>745</td>
</tr>
<tr>
<td>(\tilde{t}_1)</td>
<td>578</td>
<td>578</td>
<td>579</td>
<td>579</td>
<td>580</td>
</tr>
<tr>
<td>(\tilde{\tau}_2)</td>
<td>331</td>
<td>332</td>
<td>333</td>
<td>334</td>
<td>336</td>
</tr>
<tr>
<td>(\tilde{e}_L)</td>
<td>323</td>
<td>324</td>
<td>326</td>
<td>328</td>
<td>330</td>
</tr>
<tr>
<td>(\tilde{\chi}_2^0)</td>
<td>266</td>
<td>266</td>
<td>266</td>
<td>266</td>
<td>266</td>
</tr>
<tr>
<td>(\tilde{\tau}_1)</td>
<td>252</td>
<td>254</td>
<td>256</td>
<td>258</td>
<td>260</td>
</tr>
<tr>
<td>(\tilde{\chi}_1^0)</td>
<td>149.9</td>
<td>151.8</td>
<td>154.8</td>
<td>156.7</td>
<td>159.5</td>
</tr>
</tbody>
</table>

\[\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0} \]

| \(\Delta M \) | 5.7 | 7.6 | 10.6 | 12.5 | 15.4 |

| \(M_{\tilde{t}^0}^{\text{max}} \) | 60.0 | 68.3 | 78.7 | 84.1 | 91.2 |