
Chapter 34 
Geometric Optics (also known as Ray Optics) 

by C.-R. Hu 
 

1. Principles of image formation by mirrors 
                

(1a)  When all length scales of objects, gaps, and holes are much larger than 
the wavelength of light, we can treat light as a bundle of light rays.  Each 
light ray is a straight line in a uniform medium (i.e., when the index of ref-
raction n is a constant.)  The light rays change direction only when reflection 
and refraction are encountered. 
 

(1b)  Each extended object can be thought of as a collection of points. Each 
such point can be considered as a point source of light, if it either emits light 
or is illuminated by a light source. This is because most objects reflect light 
diffusely, that is, in all directions.  Thus any point on an object can be taken 
as a point source of a bundle of light rays pointing in all outward directions 
that are not blocked. 
 

(1c)  When an eye receives a bundle of light rays that appears to all come 
from one point in space after straight-line extrapolation, then the brain inter-
prets that point as the source of this bundle of light rays.  Thus one can be 
fooled as to the actual location of the real point source that is emitting the 
light rays that his eyes receive, if the light rays were somehow bent before 
reaching his eyes.  This can happen when mirrors are involved (or when the 
index of refraction is not a constant in space, as in the case when one or 
more interfaces are present, or when there is a gradual change of the index of 
refraction in a continuous way).  This is when one sees an image of an 
object not located where the object is.   
 

If every point in an image actually has a bundle of light-rays crossing 
through it, then this image is called a real image, which can expose a 
photographic film, if only the film is placed to face the incoming light rays.  
If extrapolation must be involved in order to find the points where bundles 
of light rays seem to all have come from, then the image is called a virtual 
image, which cannot expose a photographic film, but it can be seen. 
 

An image can be upright or inverted (which means that the image is in  the 
same orientation or up-side-down relative to the object).   The lateral size of 
the image can be larger or smaller than that of the original object, by the 
lateral magnification m defined as  
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  m = (image size  ) /(object size ) . y′ y
 
2. Image formation by a plane mirror 
 
 

 d 
 image  object 

 eye 
 mirror

 d

Front side of mirror Back side of the mirror. 
No light rays actually reach this 
side. The dotted lines are extra- 
polations. The image formed is 
therefore a virtual image. 

 
 
 
 
 
 
 
 
 
 

Using the law of reflection, one can conclude that if a bundle of light rays is 
emitted from a point source which is at a distance d  in front of a mirror, then 
after this bundle of light rays is reflected by the mirror, they will all appear 
to have come from a point at a distance d  behind the mirror. 
This point is therefore the virtual image of the point source.  Now consider 
the many points of an extended object in front of a mirror as many point 
sources of light rays, one can see that the virtual image of this object will be 
front-back inverted, but not left-right or up-down inverted.  Such an image is 
said to be parity-inverted.  One can convince oneself that the image is of 
the same size as the real object in this case.  The lateral magnification m  is 
therefore equal to unity for a plane mirror. 
 

Any distance behind the mirror is said to be negative, and any distance in 
front of the mirror is said to be positive.  Thus if s  is the object distance 
from the mirror, and s′  is the image distance from the mirror, then we have 
  s s′=−    for a plane mirror. The minus sign reflects the fact that while the 
object is in front of the mirror, the image is actually behind the mirror. 
 

When two mirrors are face to face, and an object and an eye are both in the 
space between the two mirrors, with the eye facing the proper direction, then 
some light rays from the object can be reflected by both mirrors in suc-
cession before reaching the eye. Then the image formed by the first mirror 
can be treated as the object for the second mirror.  The size and location of 
this effective object is the size and location of the image of the first mirror.  
Three or more mirrors can be treated similarly, but they cannot be placed in 
a straight line, since a mirror will not function if no light rays can reach it.  
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In all multi-mirror situations, the image formed by the last mirror is the 
image of the object formed by the combination of mirrors. 
 

3. Image formation by a spherical mirror 
 

A spherical mirror is said to be a convex spherical mirror, if its reflecting 
surface is the outer surface of the spherical mirror. That is, if the front of the 
mirror is facing the outside of the sphere.  Otherwise the spherical mirror is 
said to be a concave spherical mirror.  The radius of a concave spherical 
mirror is defined to be positive (because its center of curvature is in front of 
the mirror), and the radius of a convex spherical mirror is defined to be 
negative (because its center of curvature is behind the mirror). 
 

A spherical mirror is usually only made of a small part of a sphere.  A line 
passing through the center of the mirror V and its center of curvature C  
is called the principal axis of the mirror. 
 
 

C V principal axis R
 
If we consider only objects small in comparison with the radius of curvature 
of the spherical mirror, R, lying on or very near the principal axis, and if we 
work out the image of the object using rays that are nearly parallel to the 
principal axis, it is called paraxial approximation.  Such rays are called 
paraxial rays.  A spherical mirror forms a clear image of an object only 
under such an approximation.  Thus a spherical mirror should have a size 
small in comparison with its radius of curvature R.  Otherwise the image of 
a point will not be a point, but will be a short line segment. 
 

Again, we introduce the object distance s  (measured from  V ),  the image 
distance s′  (also measured from  V ),  the object size y ,  and the image size 
y′ .  We also introduce a new quantity for a spherical mirror, its focal length   
f , which is the distance between V  and its focal point F.  We define: 
 

f  > 0  for a concave mirror,     and     f  < 0  for a convex mirror. 
 
Then using the law of reflection it can be shown in the paraxial approxima-
tion that 

f  =  R / 2         (focal length of a spherical mirror). 
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convex mirror 

 C V F

concave mirror

F VC

 
 
 
 
 
(If the mirror appears nearly flat, i.e., if the size of the mirror is much 
smaller than its radius, then the focal point F will be exactly half way 
between the center of the mirror V and the center of curvature of the mirror 
C.  It doesn't appear so in the above figures because the mirrors drawn are 
not nearly flat.  This is why we need paraxial approximation.) 
 

Only two formulas govern the image formation by a spherical mirror: 
 

                
1 1 1  ,
s s f
+ =

′         .y sm
y s
′ ′

= =−            
  

Recall that  f = R/2,  and  f  is positive (negative) for a concave (convex) 
spherical mirror.  As in the case of a plane mirror, s and s′ are positive if in 
front of the mirror, and negative if behind the mirror.  Also,  and  are 
positive if above the principal axis, and negative if below the principal axis. 
These equations will let you find the position and size of the image.  To see 
why they are true (in the paraxial approximation only), and to determine 
whether the image is real or virtual, upright or inverted, we need:

y y′

 
 

4. Graphical method for mirrors (ray diagram) 
 
The procedure is as follows: 
 

(i)  Draw a horizontal line representing the principal axis.  Draw a vertical 
straight line symmetrically crossing the principal axis to represent the 
spherical mirror. (In the paraxial approximation, the mirror surface can 
be regarded as flat in this graphical method.)  Mark it with a letter M   to 
remind yourself that it is the spherical mirror.  Lightly shade a thin region 
on one side of the vertical line representing the mirror, to remind you that 
this is the back side of the mirror. 

 

(ii) Mark the locations of the point V  (for the center of the mirror), the point 
     C (for the center of curvature of the spherical mirror), and the point F   
     (for the focal point of the mirror) on the principal axis.  C and F should  
     be in the front (or backside) of the mirror, if the spherical mirror is   
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     concave (or convex).  The point F  should lie half way between the  
     points V and C.  
 

(iii) Draw a short vertical arrow starting on a point on the principal axis  
     pointing upward to represent the object.  It should be located where the  
     object is. That is, the whole graph should be drawn to scale.  The ratio  
     between the object distance s and the focal length  f  or the radius of  
     curvature R should be what is given in the problem.  Whether the object  
     is in front or in the back (for a virtual object) of the mirror should be also  
     as given in the problem.  (A real object can only be in front of the mirror,  
     But in a combination of mirrors, the object for the second mirror is the   
     image of the first mirror, which can lie in the back of the second mirror.   
     That is, the light rays can be reflected by the second mirror before they  
     form the image of the first mirror. Such an “object” is called a virtual 
     object.  In such a case, the object distance   for the second mir-  2s
     ror would be negative because the “object” is behind the second mirror. 
 

(iv) Starting at the tip of the arrow representing the object, draw at least two 
     of the following three principal rays: (a) The first principal ray should   
     be parallel to the principal axis.  After it is reflected by the mirror, it 
     should go through the focal point  F, possibly by extension if F is behind 
     the mirror.  (b) The second principal ray should go through the focal 
     point  F, possibly by extension if F is behind the mirror.  After this ray 
     is reflected by the mirror, it should become parallel to the principal axis.   
     (c) The third principal ray should point toward the point  V.  After it is 
     reflected by the mirror this ray should be on the other side of the prince- 
     pal axis, and making the same angle with the principal axis as that bet-   
     ween the incident third ray and the principal axis.  
 

     If the graph is drawn to scale, all of these three rays, after reflection,  
     should all go through one point in your graph (possibly after extrapola- 
     tion), which can then be identified as the image of the tip of the object      
     arrow.  Draw now a vertical arrow beginning on a point on the principal     
     axis, and ending on this point that you have just found.  This arrow,    
     which might be inverted, is then the image of the object arrow.  The size  
     ratio of these two arrows gives you the lateral magnification of the object  
     by this spherical mirror.  You can now see whether the image is inverted  
     or upright, by checking whether the image arrow that you just obtained is  
     inverted or upright.  You can also check whether the image is real or vir- 
     tual, by checking whether extrapolation is needed or not, in order to find     
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     the location of the tip of the image arrow, i.e., whether the three principal  
     light rays, after reflection, will need backward extrapolation to the back  
     side of the mirror, before they will intersect at one point. 
 

     Warning:  If you draw your graph poorly, the three rays, after reflection, 
     will not go through a single point, with or without extrapolation. But you 
     will find that they will more or less go through a single point (possibly 
     after extrapolation).  Then you should know that your drawing is inaccu- 
     rate, and you should improve it.  In an accurate drawing, these three rays 
     will necessarily go through one point, either in front of the mirror, or in 
     the back of the mirror after backward extrapolation of the three reflected 
     rays. Thus only two rays will be sufficient to find the intersection point. 
 

Actually, there is also a fourth principal ray:  This ray starts at the tip of 
the object arrow, and goes through the point C (possibly after extrapola-
tion).  Its reflected ray will also go through this point C, so it will simply 
trace the incoming ray backward.  This is because this ray is perpendicular 
to the spherical mirror. In an accurate drawing, all four principal rays, after 
reflection, will go through one point (possibly after extrapolation).  But your 
drawing will unlikely be that accurate, so drawing too many rays might con-
fuse you.  All rays that come out of the tip of the object arrow, after reflec-
tion by the mirror, will go through the tip of the image arrow (possibly after 
extrapolation, if the image is virtual), only if the size of the mirror is small in 
comparison to its radius of curvature (so that the mirror can be represented 
by a straight vertical line in the graph).  If the size of the mirror is not that 
small, then these rays will not all meet at the same point after reflection.  
 

Usually, you need only work out the images of a few extreme points in the 
object before you can see the location, size, and orientation of the whole 
image. 
 

When applying this graphical method, you can draw the mirror as flat and 
infinitely large, and not worry about any light ray to not hit the actual area of 
the mirror.  This is the spirit of the paraxial approximation.  Your purpose is 
to find the location, size, and characteristics (i.e., upright or inverted, real or 
virtual) of the image formed only.  Actual finite size of the mirror can make 
you see only a part of the image, depending on the location of the eye seeing 
it. But this is not why we want to find in this graphical method.
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Examples: 
 

(i) Concave mirror  (focal point in front of the mirror,  f  > 0): 
 

Q

Q′  

 
 principal axis 

 the second principal ray 

 the third principal ray  the first principal ray 

V
 M 

 front of mirror 

 In this example, the image is seen to be real,  
 inverted, and a little bit smaller than the object. 

 F 

 extrapolations of the reflected rays of :

 object 

 image 

 
 
 
 
 
 
 
 
 
 
 
 
 
(ii) Convex mirror  (focal point behind the mirror,  f  < 0): 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q

Q′

  principal axis 

 In this example, the image is seen to be virtual, 
 erect, and less than half the size of the object. 

 the second principal ray

 the first principal ray 

 the third principal ray 

 extrapolations of the reflected rays of : 

 image 

 object 
 

FV

 M

 
 
 
 

 In either example, the fourth principle ray was not drawn.  It starts from the top of the  
 object, and goes toward O, which is twice as far from A as F.  It is reflected exactly  
 backward.  It also goes through the top of the image (possibly after extrapolation). 

Note that only when we can neglect the curvature of the mirror in locating 
the reflection points can we find all three principal light rays to converge to 
a single point in the case of a concave mirror, and to diverge as if they all 
come from a single point in the case of a convex mirror.  
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5. Image formation by a flat interface between two optical 
media 
 
 

 
 
 
 
 
 
 
 
 

Q  

Q′  

For , the object at Q in 
the lighter medium appears to 
be farther from the interface (at 
Q’ ) if viewed on the other side. 
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Q  
 
 
 
 
 

For , the object at Q in the
denser medium appears to be 
closer to the interface (at Q’ ) if 
viewed on the other side.  
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Note:   (1)  indicates where the object is located.  indicates where 
the image is located.  We have assumed that light moves from the side a 
to the side b, then we have  on the right hand side of the equa-
tion.   (2) The object distance 

bn n− a

s  is the distance . It is positive if  is 
in side a, where light is located 

PV P
before refraction. The next figure shows 

when s  is negative.  The image distance s′  is the distance VP . It is 
positive if it is on the side b, where light is located 

′
after refraction.  

Then the image (at P’ ) is called a real image, and it can expo
photographic film placed there. If extrapolation of the light rays to the a 
side is needed in order to obtain the image, then  is negative, and the 
image is called an virtual image.  It can not expose a film, since light is 
actually on the b side.   (3)  is positive if the center of curvature of the 
spherical interface is on the side b.  It is negative if it is on side a.  That 
is, looking along the direction of light, if the interface appears convex 
(concave), then R is positive (negative).  

se a 

s′

R

The situation is shown in the following figure: 

R

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

When can s be negative?  Foe any real object, s is always positive.
However, the image of a previous optical stage can become the object of 
the present stage. If light from a previous stage attempts to form an 
image at P as in the following figure, but is intercepted by the spherical 
interface, so the image is actually formed at , then the image of the 
previous stage is never formed at P, and it is called a virtual object for 
the present stage. The object distance s is then negative, with a magni-
tude e

P′

qual to VP.  Note that extrapolation is again involved. 
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The size of the image (positive for an upright image and negative for an 
inverted image), is related to the size of the object (positive for an upright 
object and negative for an inverted object) by the magnification factor  m: 

y′
y

 

a

b

n sym
y n . s

′′
≡ =−

 

Proof will be omitted, but it is not difficult to see why  is in the numer-

ator, and  is in the denominator.  (Large  or 
an s′

bn s bn s  at fixed  and an s′  
tends to make the image smaller). There is a minus sign in the front, since in 
the simplest situation, when both  and s s′

y
 are positive, the image is actual-

ly inverted, so  is actually negative if  is positive.  (y′ A negative m means 
that the image is inverted relative to the object.  A positive m means that the 
image is not inverted relative to the object.) 
 

Putting , and you get the situation of a flat interface. But notice that 
the formulas in this section are only valid in the paraxial approximation.  So 
all light rays must be nearly parallel to the principal axis.  That is, they must 
all be paraxial rays. 

R=∞

 

7. What is a lens? 
 
Beginning with a circular platelet of a uniform transparent material with an 
index of reflection n  > 1, grind and polish its two flat surfaces into either 
convex or concave spherical surfaces.  If used in vacuum or in a medium 
with an index of reflection n'  < n, and if the final product is thicker in the 
middle, it is a converging lens. If it is thinner in the middle, it is a divergent 
lens.  (The opposite is true if n'  > n.) 
 

A convergent lens can still have the following different shapes: 
 
 
 
 
 
    double convex               planoconvex                      convex meniscus 
 
and a divergent lens can still have the following different shapes: 
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    double concave           planoconcave                    concave meniscus 
 
A convergent lens can bend parallel light rays toward a single focal point F 
on the exit side of light (left figure).  A divergent lens can bend parallel rays 
into a divergent beam, as if all light rays on the exit side of light came from 
a single focal point F on the entrance side of light (right figure).  Since no 
light actually came from this point, it is called a virtual focal point of this 
divergent lens. 
 
 
 
 
 
8. Thin lens approximation 
 
If the thickness of a lens and its lateral size are both much smaller than the 
radii of its two faces, one can treat it as if it has no thickness, and is also 
(essentially) flat.  Then all incident light rays can be treated as if they are 
bent (refracted) at a planar surface of no thickness representing that lens.  
The center of that planar surface is the center of the lens O.  The distance 
between O and the focal point F  is the focal length f  of this lens.  The 
focal length f  is positive if the lens is convergent, when F is on the exit side 
of light.  The focal length is negative if the lens is divergent, when (the 
vertual focal point) F is on the entrance side of light. 
 
 
 
 
      

F F 

F 

  divergent lens 
  ( f = − OF < 0) 

O 

 convergent lens 
  ( f = OF > 0) 

O 

F 

 
 
 

Since light can come in from either side of a thin lens, a thin lens (whether 
convergent or divergent) has two focal points, one on each side, and at the 
same focal length f  from the center O of the thin lens.  Only one of the two 
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focal points is used in each actual image formation, since light must be in-
cident from one side of the lens.  You should always use the focal point on 
the exit side of light if the lens is convergent, and you should always use the 
focal point on the entrance side of light if the lens is divergent. 
 
9. Image formation by thin lenses 
 
The two equations 
 

1 1 ,1
s s f
+ =

′  

and 

,y sm
y s
′ ′

≡ =−  
 

are again valid for obtaining the location, type, and size of the image.  How-
ever, the sign convention is somewhat different from the case of spherical 
mirrors: 
 

The object distance s  is positive if it is on the entrance side of light.  (All 
real objects will therefore automatically have a positive s .  But the image of 
a first lens can become the object of a second lens. In that case, the “object” 
of the second lens may not be on the entrance side of light to the second 
lens. In that case the 2s  for the second lens can then be negative.) 
 

The image distance s′  is positive if the image is on the exit side of light, 
and it is negative if the image is on the entrance side of light.  That is, if the 
image is formed by extrapolating the emerging light rays on the exit side 
backward into the entrance side of the lens, then s′  is negative.  In this case 
the image is not on the same side as the emerging light.  It is then a virtual 
image.  No film can be exposed by a virtual image. Only a real image can 
expose a film. 
 
10. Lensmaker’s equation 
 
A lens, whether convergent or divergent, is made of a uniform optic material 
with an index of reflection n > 1, and with two spherical surfaces of radii 
R1 and  R2 . ( R1 is radius of the first surface encountered by the incident 
light. )  These radii are positive if they appear convex to the incoming light.   
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The lensmaker’s equation is: 
 

1 2

1 1
 

1
R

( ') ( ) ,n n
f R

= − − (for thin lenses only)

 

where n’ is the index of refraction of the surrounding medium. (If the lens is 
used in air, you can approximately put n’  =  1.)  The equation can be derived 
by applying the interface equation to both surfaces of the lens. It does not 
apply to thick lenses, because then distances are measured from different O 
for the two surfaces.  One might as well use the interface equation twice in 
that case, one for each surface of the lens. 
 

If this lens is used in a medium with n’ > n, then  (n - n’) < 0, and a con-
vergent lens in air becomes a divergent lens in this medium, and a divergent 
lens in air becomes a convergent lens in this medium, because the sign of f 
gets changed by the negative sign of (n - n’)! 
 

The power of a lens is P = 1/f .  The unit of power in the SI unit system is 
diopter (D).  That is, 1 D = 1 m−1.  If  f  = 2 m, then P = 1 / (2 m) = 0.5 D. 
 

11. Graphical method for thin lenses (ray diagram) 
 

Much like the graphical method for spherical mirrors, except that the three 
principal light rays are now defined as follows:  (i) The first principal light 
ray is parallel to the optic axis before it is refracted by the lens.  After going 
through a convergent lens, it will change its direction to point toward the 
focal point on the exit side of light. If it has gone through a divergent lens, 
then it will point in a direction to look like it is coming from the (virtual) 
focal point on the entrance side of light.  (ii) The second principal light ray 
(or its extension) goes through the focal point that is on the entrance (exit) 
side of light if the lens is convergent (divergent).  After it has gone through 
the lens, it will change its direction to become parallel to the optic axis.  (iii) 
The third principal light ray points toward the center of the lens.  After 
going through the lens, it will not change direction for either a convergent 
lens or a divergent lens.  Note that the centers of curvature of the two sur-
faces of the lens should not be used in the graphical method for thin lenses, 
and therefore there is no “fourth principal light ray” for thin lenses, unlike 
the case of spherical mirrors.  Again, the image of the first lens can be the 
“object” of the second lens.  If this “object” for the second lens is not on the 
entrance side of light for the second lens, then the object length s2 for the 
second length is negative for such a case. It is then called a virtual object. 
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Helpful suggestions:  Use the notations s1 , s1’ , and f 1  for the first lens, and 
use s2 , s2’ , and  f 2 for the second lens. 
 

You should replace all thin lenses by straight lines (actually flat planes) 
perpendicular to the optic axis, and let all changes of directions of light rays 
occur on these lines (plans). 
 

Examples:    (i) Both lenses are convergent:  
                                                                                          real, upright image 
 
 
 
                  O          F1     L1     F1    I1     F2        L2         F2             I2      
 

(ii) First lens is convergent, second lens is divergent: 
 

                                                    virtual, inverted image 
 
 
 

                  O           F1     L1     F1   I1     F2 I2     L2        F2                    
 

12. Cameras 
 

Uses only one convergent lens ( f  > 0), which can be moved to change s′  
(the distance between the lens and the film), and s (the distance between the 
lens and the object), without changing s s′+   (the distance between the 
object and the film). 
 

Shutter speed --- to control the amount of light reaching the film. Too much 
light leads to overexposure. Too little light leads to underexposure. 

 
  f -number = f / D        (f  = focal length,  D = aperture diameter.) 
 
If  f - number = 2, it is given on a camera as f / 2.  Standard f – number values 
are 2.0,  2.8 (=2◊2),  4.0,  5.6 (=4◊2),  8.0,  11 (=8◊2),  16,  22  (=16◊2),  
32.  These numbers are called  f -stops. 
 

When the f – number goes down by a factor of ◊2,  D goes up by a factor of  
◊2.  The area of the lens then goes up by a factor of 2.  The amount of light 
entering the lens then doubles.  The smallest f –number of a lens is referred 
to as the speed of the lens.  (Why?  Because the smallest f –number uses the 
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full size of the lens, and the smaller f –number is, the faster you can take a 
picture.)  Larger f –numbers are obtained by setting the aperture smaller (by 
controlling the iris diaphragm).    
 

Zoom lens ― uses a collection of lenses with variable spacing to allow  
                        continuous control of the effective f of the combination. 
Telephoto lens ― has a larger f  than the normal lens, so the image can be   
                        larger.  (Because m = − s’i / s, and s’  ~ f  when s  is large.) 
Wide-angle lens ― has a shorter f  than the normal lens, so the image can  
                        be smaller ― to fit a bigger view in the film.  (Because 
                        the size of the film is fixed, to fit a bigger picture in it, you  
                        want the image to be smaller. So f  should be smaller.) 
Projector  ― a camera run in reverse, with the locations of object and  
                        image inter-changed. This can be done to any lens combina- 
                        tion, and is called the principle of time-reversal invariance. 
     This is because the Maxwell equations obeys time reversal  
                        invariance (with the direction of B  inverted at the same  
                        time).  That is, the path of all light rays can be reversed, as if  
                        future and past have been inter-changed. 
 

13. Human eyes; corrective lenses 
 

Pupil ― The size of a circular area at the center of an eye lens that is not 
blocked (by the iris) for light to enter the eye ball. 
 

Retina ― A layer on the back side of an eye ball where optic nerves are  
located. 
 

Nearsightedness (or myopia) ― An eye-ball that is too long so that the 
focal point of the eye lens is in front of the retina. Such an eye is said to be 
myopic.   
 
Farsightedness (or hyperopia) ― An eye-ball that is too short so that the 
focal point of the eye lens is behind the retina.  Such an eye is said to be 
hyperopic. 
 

Correcting glasses ― A divergent lens of the appropriate focal length 
placed in front of the eye can correct a myopic eye.  A convergent lens of the 
appropriate focal length placed in front of the eye can correct a hyperopic 
eye.  Treat such problems as a combination of two lenses. 
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Astigmatism:  Two mutually perpendicular principal  
 Eye  
lens

planes can be found, each containing the optical axis 
of the eye lens, such that light rays in those two planes 
are focused to different focal points.  This single eye 
lens thus has two focal lengths!  This is because the 
eye lens does not have spherical surfaces, but rather 
has elliptical surfaces.  To correct such an eye defect, 
a lens with compensating ellipticity must be used. 
 

14. Magnifying glass (Magnifier) 
 

A magnifying glass is just a convergent lens.  However, what one now cares 
about is the angular magnification M.  Its definition is as follows: 
 

To use a magnifying glass, one usually puts the object at its focal point, so 
that s = f.  Then s′  will be negative infinity, and the image will be virtual 
and erect, and infinitely far away from the eye (so that the eye can be in the 
relaxed state). 
 

 

θ' F F

 lens

 object image

 
 
 
 
 
 
 
The angular size of the image is  .  Here we have / | | /y s yθ ′ ′ ′= = s s′  
= − , and s∞  = f . Thus θ ' = y / f .   On the other hand, if the magnifying 
glass is not used, the object would have to be placed at the closed distance 
that the eye can see clearly (with maximum strain), which is  N = 25 cm  
for a normal eye.  Thus the angular size of the object would be θ  = y /N,  
if the magnifying glass is not used.  Comparing the two angular sizes, we 
obtain the angular magnification of the magnifying glass: 
 
 

/ .
/

y f NM
y N f

θ
θ
′

= = =  

 For relaxed eye. 
 which is focused  
 at infinity. 
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or 
/ 1 1=  = +1.
/

y s N NM N
y N s f N f

θ
θ
′  

= = = + 
 

 
 

 
 

(For maximally-strained eye, which is focused at the near point.) 

15. Telescopes 
 

Astronomical (or refracting) telescope ― uses two convergent lenses: 
                   An objective lens with f 1 > 0, and an eyepiece lens with   
                    f 2 > 0.  For seeing objects at infinity with a relaxed eye, the 
                   final image formed by the two lenses must also be at infinity. 
                   ― The image formed by the objective must be at distance                      
                   f1 from the objective, and at distance f2 from the eyepiece, 
                   and lies between them.                         
 

  Total (angular) magnification power of the telescope:   
  

                           
2 2 1

1 1 2

/
/

y f fM
y f f

θ
θ
′ −= = = −

′        (because ). 2 1y y′=
 

(Minus sign indicates that the “object” for the eyepiece, which is just the real 
image of the actual object formed by the objective, is inverted, so the final 
virtual image of the object formed by the eyepiece is also inverted.) 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 

1y′

1 0y′ <

2 1 

The “object” for the eyepiece is just the image of the actual 
object formed by the objective. Its height is  −  . (Minus 
sign because ,  meaning that the image is inverted.) 

See virtual 
image far 
in front of 
the eye.

eyepiece 
objective 

f 2f 1

 Actual   
 object 
 

 far far   
 away. 
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Astronomical reflecting telescope ―  uses a concave mirror as the 
objective, and uses either “a flat mirror plus a convergent lens” or a 
diverging mirror as the eyepiece.  

Terrestrial  telescope ― to view objects on earth, must provide upright 
images. ―  The Galilean design uses a divergent lens as the eyepiece (2), 
at distance 1 2f f−    from the objective (1), so that the image formed by the 
objective is at the exit side of light for the eyepiece, and is therefore a 
virtual object to the eyepiece, which means that 2s  < 0. A second design 
(called a spyglass) uses three convergent lenses. Adding prisms to fold the 
light rays in order to reduce the total length of the telescope, one has the 
prism binocular.  It is a pair of telescopes for the two eyes. 
 

16. Compound microscope 
 

For seeing very small objects at close distance. Also uses two convergent 
lenses: An objective lens with  f1 > 0, and an eyepiece lens with  f2 > 0.  
An inverted virtual image is formed by the lens-combination at infinity for a 
relaxed eye. The overall magnification of the microscope is the product of 
the objective magnefication   
and the eyepiece (angular) magnification 

1 1 1 1 1 2 1/ / ( ) / /m y y s s l f s l f′ ′= = = − ≈
2 2/ ,

1,
M N f=   i.e.,  

 

  
2

1 2
2 1 2

,l fN NM mM
f s f f

   −= = ≈      1

l

 

where l is the distance between the objective and the eyepiece. 
 

17. Aberation of lenses and mirrors 
 

Spherical aberration ―  When a lens or mirror is not small in comparison 
with the radius or radii involved, it will not be able to focus all parallel light 
rays to a single focal point.  Changing spherical mirrors to parabolic mirrors 
solve this problem.  Correction for this problem in lenses also exist, but is 
more complicated, and involves multiple of lenses of different indices of 
reflection. 
 

Off-axis aberrations ― Additional aberrations for off-axis objects for large 
lens or mirror. 
 

Chromatic aberration ― Caused by the frequency dependence of  n, so 
light of different colors will have different focal lengths.  May be corrected 
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by using a suitable doublet of lenses of different n, one convergent and one 
divergent. Note that spherical mirrors have no chromatic aberration, which is 
why objectives of large telescopes use spherical mirrors rather than lenses. 
 

18. Corrective glasses for near- or far-sightedness 
 

If a relaxed eye is near-sighted, then its far point is not at infinity, but is at 
some finite distance D from the eye. The person then needs to wear a diver-
gent corrective lens which, for an object at infinity, can form a virtual 
image of it at the far point of the eye in order for the eye to see it clearly.  If 
a relaxed eye is far-sighted, then an object at infinity will form an image by 
this relaxed eye on a point behind its retina. Only a virtual object behind the 
eye lens can form a real image of it by this eye on its retina. Thus this re-
laxed eye needs to wear a convergent corrective lens, which, for an object 
at infinity, will form an image behind the eye lens. It would then become the 
virtual object of the eye lens at where it needs to be, so the relaxed eye can 
see it clearly.  So far, the correction is on a relaxed eye.  A person older than 
about 45 to 50 years of age can have an eye lens which has lost some of its 
elasticity.  Thus even if the eye’s far point is at infinity which requires no 
correction, its near point N can still be larger than 25 cm. This eye then 
needs to wear a convergent reading glass, which, for an object at 25 cm, will 
form a virtual image of it at N, so the eye can see it clearly. 
 

19. Relation with the next two chapters 
 

Geometric optics, which treats light as a collection of light rays, will no 
longer give right answers if the sizes of objects, gaps, and holes, etc., are 
comparable to or smaller than the light wavelength.  Light will no longer go 
in straight lines, and very interesting and fundamental interference pheno-
mena will occur.  Light passing through two parallel slits will produce a set 
of many parallel bright lines on a screen; A beautiful color pattern can ap-
pear on a very thin oil film illuminated by white light; A thin transparent 
coating, with a thickness equal to a quarter of the light wavelength, can eli-
minate reflection. These and other related phenomena can have very useful 
applications, such as measuring the speed of light to a high precision, or 
confirming Einstein’s theory of relativity, or determining the precise atomic 
arrangement in a solid.  A related concept is called diffraction.  It can ex-
plain why an optical microscope can never let you resolve separations less 
than about 50 nm.  It can also limit the performance of telescopes and 
cameras. Geometric optics gives us a false hope that magnification has no 
limit.  Physical (or wave) optics tells us why it can’t be true. 


