THREE DIMENSIONAL RADIAL PROBLEMS IN SPHERICAL POLAR COORDINATES

In terms of the function \(\chi(r) \equiv r R(r) \), the wave equation is

\[
\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V(r) + \frac{\hbar^2 \ell (\ell + 1)}{2\mu r^2} \right] \chi = E \chi.
\]

This has exactly the form of a 1-D problem with the effective potential energy given by

\[
U(r, \ell) = V(r) + \frac{\hbar^2 \ell (\ell + 1)}{2\mu r^2}.
\]

Also, \(\chi(r) = 0 \) at \(r = 0 \) is equivalent to \(U(r, \ell) = 0 \) for \(r \leq 0 \). Hence the qualitative and quantitative procedures used for the 1-D case can be immediately applied, but it is necessary to treat each value of \(\ell \) as a separate problem. Before proceeding to consider "canonical examples", note the physical significance of the \(\chi(r) \) function.

\[
\psi = R(r) Y(\theta, \phi)
\]

\[
|\psi|^2 = |R|^2 |Y|^2.
\]

If we want the probability that the particle is between \(r \) and \(r + dr \), regardless of angular orientation, we integrate \(|Y|^2 \) factor over all angles and get

\[
\int \int |\psi|^2 r^2 \sin \theta d\theta d\phi dr = 4\pi r^2 |R|^2 dr
\]

\[
4\pi |\chi|^2 dr
\]

so \(|\chi|^2 \) is radial probability distribution.

Hydrogen Atom

Consider

\[
\left(-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} - \frac{e^2}{r} + \frac{\hbar^2 \ell (\ell + 1)}{2\mu r^2} \right) \chi = E \chi.
\]

It is convenient to introduce atomic units:

- distance in terms of Bohr radius, \(a_o = \frac{\hbar^2}{\mu e^2} \)

- energy in terms of Rydberg energy, \(Ry = \frac{e^2}{2a_o} \)

These are equivalent to setting \(\hbar = 1 \), \(e^2 = 2 \), \(\mu = \frac{1}{2} \).
RADIAL PROBLEMS - 2

Thus the problem becomes

\[\frac{d^2 \chi}{dr^2} + \left(E + \frac{2}{r} - \frac{\ell(\ell+1)}{r^2} \right) \chi = 0 \]

with \(\chi = 0 \) at \(r = 0 \) and \(\chi \to 0 \) as \(r \to \infty \). The bound state energy levels are given by

\[E = -\frac{1}{2} \text{Unusual case since no dependence on } \ell \text{ in Rydberg units} \]

\[n = 1, 2, 3, \ldots \]

The qualitative form of the radial wavefunctions can be readily inferred by examining the effective potential function

\[U(r, \ell) = -\frac{2}{r} + \frac{\ell(\ell+1)}{r^2} \quad r > 0 \]
\[= \infty \quad r < 0 \]

The classical turning points are defined by

\[E - U(r, \ell) = \frac{1}{2} \mu r^2 = 0 \text{ at } r = r_0, \text{ where } \dot{r} = 0. \]

Thus,

\[-\frac{1}{n^2} + \frac{2}{r_0} - \frac{\ell(\ell+1)}{r_0^2} = 0 \quad \text{or } U(r_0, \ell) = -\frac{1}{n^2} \]

or

\[r_0 = n \left[n \pm \sqrt{n^2 - \ell(\ell+1)} \right]. \]

The minimum in \(U(r, \ell) \) is given by

\[\left(\frac{dU}{dr} \right)_r = 0 \quad \text{or } \frac{2}{r_m^2} = 2 \frac{2\ell(\ell+1)}{r_m^3} = 0 \]

and hence \(r_m = \ell(\ell+1) \) and \(U(r_m, \ell) = -\frac{1}{\ell(\ell+1)} \).

With these values for \(r_0, r_m, U(r_0, \ell), U(r_m, \ell) \), we can sketch the \(U(r, \ell) \) functions and the wavefunctions. Roughly, we find:
Note that the nodal properties are apparent from these sketches: the \((n, \ell)\) radial function has \(n - 1 - \ell\) nodes (not counting that at \(r = 0\)). The qualitative form of the wavefunctions reflects the classical turning points and the extremely flat character of \(U(r, \ell)\) at large \(r\):

\[
\ell = \sqrt{\frac{\hbar^2}{\mu}} \frac{1}{r}
\]

\(\ell = \sqrt{\frac{\hbar^2}{\mu}} \frac{1}{n^2}\)
Fig. 7-6. The radial probability distribution function $r^2 \chi^2_{n,l}$ for several values of the quantum numbers n, l. (From E. U. Condon and G. H. Shortley, *The Theory of Atomic Spectra*, Cambridge University Press, Cambridge, 1953, by permission.)
HATOM ENERGY LEVELS
AND EFFECTIVE POTENTIAL CURVES

ENERGY IN UNITS OF $e^2/2\alpha_0$

$\ell=0$

$\ell=1$

$\ell=2$

Centrifugal terms feel up the quantum well
ENERGY LEVELS FOR A PURE COULOMB WELL

Continuum

\begin{align*}
2s & \quad 2p \\
3s & \quad 3p \\
4s & \quad 4p \\
5s & \quad 5p \\
5d & \quad 5f \\
6g &
\end{align*}

ENERGY (above lowest level, in units of $\frac{e^2}{2}\alpha^2$)

\begin{align*}
1.0 & \\
0.5 & \\
0 &
\end{align*}
RADIAL PROBLEMS - 5

Isotropic Harmonic Oscillator

\[
\left(-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{1}{2} kr^2 + \frac{\hbar^2 \ell(\ell+1)}{2ur^2} \right) \chi = E\chi
\]

Use for distance unit \((\frac{\hbar}{\mu a})^{1/2}\) with \(\omega = (k/m)^{1/2}\)

Use for energy unit \(\frac{1}{2} \hbar \omega\)

Then

\[
\frac{d^2\chi}{dr^2} + \left(E - \frac{r^2}{2} + \frac{\ell(\ell+1)}{r^2} \right) \chi = 0
\]

with \(\chi = 0\) at \(r = 0\) and \(\chi \to 0\) at \(r \to \infty\).

Bound state energy levels given by

\[
E = 2n+3, \ n = 0, 1, 2, \ldots
\]

Again an unusual case because no dependence on \(\ell\)

Classical turning points:

\[
2n+3 - r_o^2 - \frac{\ell(\ell+1)}{r_o^2} = 0
\]

\[
r_o = \left[(n + \frac{3}{2}) \pm \sqrt{(n + \frac{3}{2})^2 - \ell(\ell+1)} \right]^{1/2}
\]

and \(U(r_o, \ell) = 2n+3\)

Minimum in \(U(r, \ell)\):

\[
2r_m - \frac{2\ell(\ell+1)}{3r_m} = 0
\]

or

\[
r_m = \left[\ell(\ell+1) \right]^{1/4}\ 	ext{and} \ U(r_m, \ell) = 2[\ell(\ell+1)]^{1/2}
\]
RADIAL PROBLEMS - 6

Sketch $U(r,\ell)$ functions and wavefunctions, making use of what we know already from solution of the isotropic oscillator problem in Cartesian coordinates:

Energy in units of $\hbar \omega$

<table>
<thead>
<tr>
<th>$\ell = 0$</th>
<th>$\ell = 1$</th>
<th>$\ell = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{0\text{ (inner)}} = 0$</td>
<td>$r_{0\text{ (inner)}} = \left[\left(\frac{n+\frac{3}{2}}{2}\right) - \left(\frac{n+\frac{3}{2}}{2}\right)^2 - \frac{1}{2}\right]^\frac{1}{2}$</td>
<td>$r_{0\text{ (inner)}} = \left[\left(\frac{n+\frac{3}{2}}{2}\right) + \sqrt{\left(\frac{n+\frac{3}{2}}{2}\right)^2 - 2}\right]^\frac{1}{2}$</td>
</tr>
<tr>
<td>$r_{0\text{ (outer)}} = (2n+3)^{\frac{1}{2}}$</td>
<td>$r_{0\text{ (outer)}} = \left[\left(\frac{n+\frac{3}{2}}{2}\right) + \sqrt{\left(\frac{n+\frac{3}{2}}{2}\right)^2 - 2}\right]^\frac{1}{2}$</td>
<td>$r_{0\text{ (outer)}} = \left[\left(\frac{n+\frac{3}{2}}{2}\right) + \sqrt{\left(\frac{n+\frac{3}{2}}{2}\right)^2 - 2}\right]^\frac{1}{2}$</td>
</tr>
</tbody>
</table>

inner/outer

$\frac{n}{3} = 0, 2, 4, \ldots$

$\frac{n}{3} = 1, 3, 5, \ldots$

$\frac{n}{3} = 2, 4, 6, \ldots$

$\frac{n}{3} = 0, 1, 2, \ldots$
ENERGY LEVELS AND EFFECTIVE POTENTIAL CURVES FOR ISOVORETIC HARMONIC OSCILLATOR

ENERGY, in units of ħω

n=4 n=3 n=2 n=1 n=0

l=2 l=1 l=0

doesn't exist due to uncertainty principle
ENERGY LEVELS FOR AN ISOTROPIC
HARMONIC OSCILLATOR

ENERGY (above lowest level, in units of \(\hbar \omega \))

- Level 6: 5s, 5p (168), 5d
- Level 5: 4f, 4g
- Level 4: 3s, 3p (10), 3d
- Level 3: 2s, 2p (8), 2d
- Level 2: 1s
- Level 1: 0s

Levels are labeled with their corresponding \(l \) values:
- \(l = 0 \), \(l = 1 \), \(l = 2 \), \(l = 3 \)
RADIAL PROBLEMS - 7

Note the relationships between the 1-D problem and the $\ell = 0$ case of the 3-D problem:

\begin{align*}
\text{1-D Oscillator} & \quad \text{3-D Oscillator} \\
\text{\(n_x = 5\)} & \quad \text{\(n = 4\)} \\
\text{\(n_x = 4\)} & \quad \text{\(n = 2\)} \\
\text{\(n_x = 3\)} & \quad \text{\(n = 2\)} \\
\text{\(n_x = 2\)} & \quad \text{\(n = 0\)} \\
\text{\(n_x = 1\)} & \quad \text{(for \(n_x = 1, 3, 5, \ldots\))} \\
\text{\(n_x = 0\)} & \quad \text{(for \(n_x = 1, 3, 5, \ldots\))}
\end{align*}

We see that inserting an infinite wall at the mid-point of the 1-D potential eliminates the $n_x = 0, 2, 4, \ldots$ solutions, which all have maxima or minima there, whereas the $n_x = 1, 3, 5, \ldots$ solutions remain good since they have nodes at the midpoint. Hence the $x > 0$ portions of the latter become the solutions for the 3-D, $\ell = 0$ problem, with

\[n = n_x - 1 = 0, 2, 4, \ldots \] (for $n_x = 1, 3, 5, \ldots$).

For the $\ell > 0$ cases of the 3-D problem, there is no simple relation to the 1-D problem. However, there are of course simple relations with the solution of the 3-D problem in Cartesian coordinates. These involve resolving the (n_x, n_y, n_z) degeneracies into the (n, ℓ, m) states appropriate for spherical polar coordinates.

Thus, as in the Kramer's treatment of spherical harmonics, one readily finds the following correspondences:
RADIAL PROBLEMS - 8

<table>
<thead>
<tr>
<th>Energy (units of $\frac{1}{2} \hbar \omega$)</th>
<th>Degeneracy</th>
<th>Cartesian States (n_x, n_y, n_z)</th>
<th>No. of Quanta n</th>
<th>Angular Momentum ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{3}{2}$</td>
<td>1</td>
<td>(000)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{5}{2}$</td>
<td>3</td>
<td>(100), (010), (001)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{7}{2}$</td>
<td>6</td>
<td>(200), (110), (201), (020), (101), (002), (011)</td>
<td>2</td>
<td>0-1 state, 2-5 states</td>
</tr>
<tr>
<td>$\frac{9}{2}$</td>
<td>10</td>
<td>(300), (210), (201), (030), (120), (012), (111), (003), (102), (021)</td>
<td>3</td>
<td>1-3 states, 3-7 states</td>
</tr>
</tbody>
</table>

etc.

Linear combinations of the degenerate cartesian solutions for a particular n give solutions corresponding to certain ℓ values, as follows:

- $n = 5$, $\ell = 4f$
- $n = 4$, $\ell = 4d$
- $n = 3$, $\ell = 4f$
- $n = 2$, $\ell = 3d$
- $n = 1$, $\ell = 2p$
- $n = 0$, $\ell = 1s$

$s = 0$, $\ell = 2; 3, 4$

etc.

Spherical Well, Infinitely Deep

Consider $V(r) = 0$ for $r < a$

$= \infty$ for $r \geq a$.

Use for distance unit a

Use for energy unit $\frac{\hbar^2}{2mu}$
RADIAL PROBLEMS - 9

Then
\[\frac{d^2 \chi}{dr^2} + \left[E - \frac{\ell(\ell+1)}{r^2} \right] \chi = 0 \] for \(0 < r < 1\). Now require \(\chi = 0 \) both at \(r = 0 \) and \(r = 1 \). For \(\ell = 0 \) the solution is identical to the 1-D case.

Thus have
\[\frac{d^2 \chi}{dr^2} + E \chi = 0 \quad \text{for} \quad \ell = 0 \]

\(\chi(r) = N \sin \sqrt{E} r \) (The \(\cos \sqrt{E} r \) term is absent since need \(\chi = 0 \) at \(r = 0 \).)

To make \(\chi = 0 \) at \(r = 1 \) requires
\[\sqrt{E} = n \pi \quad \text{or} \quad E = n^2 \pi^2 \] in our reduced units \(n = 1, 2, 3, \ldots \)

For \(\ell > 0 \) the energy levels will depend on the value of \(\ell \) as well as \(n \).

Note that here we cannot compare with the cartesian problem because that dealt with a cubical well and we are considering a spherical one. It turns out that in fact there are no degeneracies among energy levels of different \(\ell \) in this problem.

Examine classical turning points:
\[U(r, \ell) = \frac{\ell(\ell+1)}{r^2} \quad \text{for} \quad 0 < r < 1 \]
\[= \infty \quad \text{for} \quad r > 1. \]

For \(\ell > 0 \), \(r_0 \) (outer) = 1 always, whereas for \(r_0 \) (inner) we have:
\[E - \frac{\ell(\ell+1)}{r_0^2} = 0 \quad \text{or} \quad r_0 \) (inner) \(= \sqrt{E} \frac{\ell(\ell+1)}{\ell(\ell+1)} \]

For \(\ell > 0 \), minimum in \(U(r, \ell) \) occurs at \(r_m = 1 \) and \(U_m = \ell(\ell+1) \). Hence, find the following results:
As ℓ increases for a given n, the levels shift upwards because the spatial extent of the wavefunction is compressed.
Energy Levels and Effective Potential Curves for an Infinite Spherical Well

- $l = 0$
- $l = 1$
- $l = 2$
- $l = 3$

Energy in units of $\hbar^2 / 2\mu a^2$
ENERGY LEVELS FOR AN INFINITELY DEEP SPHERICAL WELL

Energy levels in units of \(\frac{\hbar^2}{2m} \):

- 1s: \((\frac{1}{2}, 0) \) 1.86
- 2s: \((\frac{1}{2}, 1) \) 3.47
- 2p: \((\frac{1}{2}, 2) \) 5.17
- 3p: \((\frac{1}{2}, 3) \) 6.87
- 4p: \((\frac{1}{2}, 4) \) 8.57
- 5f: \((\frac{1}{2}, 5) \) 10.27

Other terms:

- 6p
- 7f
- 8g
- 9h
- 10i
- 11j
- 12k
- 13l

Other states above 10 units of energy levels.
The mathematical treatment of H-atom, 3-D isotropic oscillator and spherical well problems is available in many texts - our aim in these notes is merely to emphasize qualitative features without getting involved in tedious details. In every case, by resolving the problem into a set of problems, one for each \(l \) value, the qualitative form of the wavefunctions, order of levels, etc., can be deduced with practically no calculation.

For reference, we list below the radial wavefunctions, \(\chi_{n\ell}(r) \) for the 3 problems considered here, omitting in each case a normalization factor \(N_{n\ell} \) to be determined such that \(\int_0^\infty \chi^2 4\pi r^2 dr = 1 \). Reduced units as defined above are used.

<table>
<thead>
<tr>
<th>Problem</th>
<th>General (\chi_{n\ell})</th>
<th>(\chi_{n\ell}) as (r \to 0)</th>
<th>(\chi_{n\ell}) as (r \to \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Atom</td>
<td>(r^{\ell+1} e^{-r/n} L_n^{2\ell+1}(\frac{2r}{n}))</td>
<td>(r^{\ell+1})</td>
<td>(r^n e^{-r/n})</td>
</tr>
<tr>
<td>Isotropic Oscillator</td>
<td>(r^{\ell+1} e^{-r^2/2} L_{n-\ell}^{\ell+1}(\frac{r^2}{2}))</td>
<td>(r^{\ell+1})</td>
<td>(r^{n+1} e^{-r^2/2})</td>
</tr>
<tr>
<td>Spherical Well</td>
<td>(r j_\ell(kr))</td>
<td>(r^{\ell+1})</td>
<td>-</td>
</tr>
</tbody>
</table>

\(k = \sqrt{E} \) determined by \(j_\ell(k) = 0 \)

\(L_\ell^\alpha(z) \) is an associated Laguerre Polynomial, \(j_\ell(z) \) a spherical Bessel function.
H ATOM RADIAL WAVEFUNCTIONS

\[\chi_{nl}(r) = N e^{-r/n} r^{\ell+1} \frac{L_{\ell+1}^{2\ell+1}(2r)}{n^{\ell-1}} \]

Table of \(NL_{n-\ell-1}^{2\ell+1}(2r/n) \) Including the normalization factor \(N \)

<table>
<thead>
<tr>
<th>(\ell = 0)</th>
<th>(\ell = 1)</th>
<th>(\ell = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 1)</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>(\sqrt{8} (2 - r))</td>
<td>(\frac{1}{\sqrt{24}})</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>(\frac{2}{81\sqrt{3}} (27 - 18r - 2r^2))</td>
<td>(\frac{4}{81\sqrt{6}} (6 - r))</td>
</tr>
</tbody>
</table>

At small \(r \), \(\chi_{nl} \) + const. \(r^{\ell+1} \). At large \(r \), \(\chi_{nl} \) + const. \(r^n e^{-r/n} \).

HARMONIC OSCILLATOR WAVEFUNCTIONS

\[\chi_{nl}(r) = N e^{-r^2/2} r^{\ell+1} \frac{L_{\ell+1}^{1/2}(\ell+1/2)}{1/2}(r^2) \]

Table of \(L_{\ell+1}^{1/2}(\ell+1/2)(r^2) \)

<table>
<thead>
<tr>
<th>(\ell = 0)</th>
<th>(\ell = 1)</th>
<th>(\ell = 2)</th>
<th>(\ell = 3)</th>
<th>(\ell = 4)</th>
<th>(\ell = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=0)</td>
<td>(L_{1/2}^{1/2} = 1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(n=1)</td>
<td>-</td>
<td>(L_{1/2}^{1/2} = 1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(n=2)</td>
<td>(L_{1/2}^{1/2} = 3/2 - r^2)</td>
<td>-</td>
<td>(L_{1/2}^{1/2} = 1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(n=3)</td>
<td>-</td>
<td>(L_{1/2}^{1/2} = 5/2 - r^2)</td>
<td>-</td>
<td>(L_{1/2}^{1/2} = 1)</td>
<td>-</td>
</tr>
<tr>
<td>(n=4)</td>
<td>(L_{1/2}^{1/2} = 15/8 - 5/2 r^2 + 1/2 r^4)</td>
<td>-</td>
<td>(L_{1/2}^{1/2} = 1)</td>
<td>-</td>
<td>(L_{1/2}^{1/2} = 1)</td>
</tr>
<tr>
<td>(n=5)</td>
<td>-</td>
<td>(L_{1/2}^{1/2} = 35/8 - 7/2 r^2 + 1/2 r^4)</td>
<td>-</td>
<td>(L_{1/2}^{1/2} = 1)</td>
<td>-</td>
</tr>
</tbody>
</table>

At small \(r \), \(\chi_{nl} \) + const. \(r^{\ell+1} \). At large \(r \), \(\chi_{nl} \) + const. \(r^n e^{-r^2/2} \)
SPHERICAL WELL WAVEFUNCTIONS

\[\chi_{n\ell}(r) = N_r j_\ell(kr) \]

\[k = \sqrt{E} \text{ determined such that } j_\ell(k) = 0 \]

Table of \(j_\ell(kr) = \sqrt{\frac{\pi}{2kr}} J_{\ell + \frac{1}{2}}(kr) \)

<table>
<thead>
<tr>
<th>(\ell = 0)</th>
<th>(\ell = 1)</th>
<th>(\ell = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\sin \text{ kr}}{\text{ kr}})</td>
<td>(\frac{\sin \text{ kr} - \cos \text{ kr}}{\text{ kr}})</td>
<td>(\left[\frac{3}{(\text{ kr})^3} - \frac{1}{\text{ kr}} \right] \frac{\sin \text{ kr} - \frac{3}{(\text{ kr})^2} \cos \text{ kr}}{\text{ kr}})</td>
</tr>
</tbody>
</table>

For \(kr \ll 1 \)

\[j_\ell(kr) = \frac{(kr)^\ell}{1 \cdot 3 \cdot 5 \ldots (2\ell + 1)} \]

For \(kr \gg 1 \)

\[j_\ell(kr) = \frac{1}{kr} \left[\cos \text{ kr} - \frac{(\ell + 1)\pi}{2} \right] \]

CLASSICAL TURNING POINT FOR ISOTROPIC 3-D HARMONIC OSCILLATOR

\[U = r^2 + \frac{\ell(\ell + 1)}{r^2} \]

\[\frac{r_{\text{inner}}}{r_{\text{outer}}} \] (slide rule calculation)

<table>
<thead>
<tr>
<th>(\ell = 0)</th>
<th>(\ell = 1)</th>
<th>(\ell = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 0)</td>
<td>(0/1.732)</td>
<td>(1.00/1.414)</td>
</tr>
<tr>
<td>1</td>
<td>(0/2.24)</td>
<td>(0.669/2.145)</td>
</tr>
<tr>
<td>2</td>
<td>(0/2.65)</td>
<td>(0.545/2.60)</td>
</tr>
<tr>
<td>3</td>
<td>(0/3.00)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(0/3.33)</td>
<td></td>
</tr>
</tbody>
</table>

\[U_m = 0 \]

\[r_m = 0 \]

\[U_m = 2.93 \]

\[r_m = 1.191 \]

\[U_m = 4.91 \]

\[r_m = 1.57 \]
Energy Levels for a particle in an infinitely deep spherical well, in units of $\frac{\hbar^2}{2\mu a^2}$

<table>
<thead>
<tr>
<th>n</th>
<th>l = 0</th>
<th>l = 1</th>
<th>l = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>9.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2s</td>
<td>39.4</td>
<td>19.9</td>
<td>3d</td>
</tr>
<tr>
<td>3s</td>
<td>88.6</td>
<td>58.9</td>
<td>4d</td>
</tr>
<tr>
<td>4s</td>
<td>157.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>