SPHERICAL HARMONICS VIA KRAMER’S METHOD

Note: \(Y(\theta,\phi) \) is independent of \(E \) and \(V \).

Thus we can solve for the case \(E = V(r) \) with \(r = \text{constant} \), take just

\[
\nabla^2 \psi = 0 \quad \text{totally determined Laplace equation due to the symmetry of the problem}
\]

The solutions of the angular part in spherically symmetric problems are well known in classical physics (and have nothing to do with quantum mechanics). Thus, e.g., we can expand a general function in spherical harmonics just as with the Fourier series.

The following method of constructing the \(Y(\theta,\phi) \) functions is due to Kramers. Represent solutions of Laplace equation by a power series,

\[
\psi_\ell = \sum_{p+q+r=\ell} a_{pqr} x^p y^q z^r
\]

where we require \(p+q+r = \ell \) in order that \(\psi_\ell \) have the form

\[
\psi_\ell = R(r)Y(\theta,\phi).
\]

In fact, \(\psi_\ell = \text{const.} \cdot r^\ell Y(\theta,\phi) \) since \(\begin{cases} x = rsin\theta cos\phi \\ y = rsin\theta sin\phi \\ z = rcos\phi \end{cases} \)

we choose the coefficients \(a_{pqr} \) to satisfy \(\nabla^2 \psi = 0 \).

Consider solutions for each \(\ell \) in succession:

\[\ell = 0 \]

\[
\psi_0 = \text{const.} \quad \text{only solution}
\]

\[\ell = 1 \]

\[
\psi_1 = ax + by + cz \quad \text{satisfies} \quad \nabla^2 \psi_1 = 0 \quad \text{for any arbitrary choices of} \ a, b, c, \ \text{so there are 3 independent solutions}
\]

\[\ell = 2 \]

\[
\psi_2 = ax^2 + by^2 + cz^2 + dxy + eyz + fzx
\]

Now \(\nabla^2 \psi_2 = 0 \) requires \(2(a+b+c) = 0 \). Thus there is one condition on the 6 parameters, so there are only 5 independent solutions.

\[\ell = 3 \]

\[
\psi_3 = ax^3 + by^3 + cz^3 + dx^2y + ex^2z + fxy^2 + fyz^2 + hzx^2 + iyz^2 + jxyz
\]

\(\nabla^2 \psi_3 = 0 \) requires \(6ax + 6by + 6cz + 2dy + 2ez + 2fx + 2gz + 2hx + 2iy = 0 \)

Since \(x, y, z \) are independent variables, this requires

\[
\begin{align*}
6a + 2f + 2h &= 0 \\
6b + 2d + 2i &= 0 \\
6c + 2e + 2g &= 0
\end{align*}
\]

Now there are 3 conditions on 10 parameters, so there are only 7 independent solutions.
SPHERICAL HARMONICS - 2

General Case: For a given \(\ell \), the number of terms \(x^p y^q z^r \) in \(\psi_\ell \) is \(\frac{1}{2}(\ell+1)(\ell+2) \). But \(\nabla^2 \psi_\ell \) is a polynomial of degree \(\ell-2 \), so the requirement that \(\nabla^2 \psi_\ell = 0 \) imposes \(\frac{1}{2}(\ell-1)\ell \) conditions. Thus there remain

\[
\frac{1}{2}(\ell+1)(\ell+2) - \frac{1}{2}(\ell-1)\ell = 2\ell + 1
\]

linearly independent polynomials of degree \(\ell \).

NOTE: How many linearly independent terms of the form \(x^p y^q z^r \) with \(n_x + n_y + n_z = N \)? In \(n_x, n_y, n_z \) space this condition defines a plane:

There are \(N+1 \) planes of the form \(n_z = k \) which will intersect the plane \(N = n_x + n_y + n_z \). The number of points (i.e. allowed solutions) contained in these intersections are:

For \(n_z = N \): 1

\(n_z = k \): \(N - k + 1 \)

\(n_z = 0 \): \(N + 1 \)

Thus the total degeneracy is

\[
\sum_{k=0}^{N} (N+1-k) = N(N+1) + 1 \cdot (N+1) + \sum_{k=0}^{N} (-k)
\]

\[
= (N+1)^2 - \sum_{k=1}^{N} k
\]
We are free to choose the form of the linearly independent polynomials, we will take them to be orthogonal. Thus we use:

- \(l = 0 \): 1
- \(l = 1 \): \(x, y, z \)
- \(l = 2 \): \(xy, yz, zx, x^2 - y^2, 2z^2 - x^2 - y^2 \)
- \(l = 3 \): \(x(x^2 - 3z^2), x(x^2 - 3y^2), y(y^2 - 3x^2), y(y^2 - 3z^2), \)
 \(z(z^2 - 3x^2), z(z^2 - 3y^2), xyz \)
 etc.

In each case, the solution has the form \(\psi_\ell = r^\ell Y_\ell(\theta, \phi) \). Hence we have

\[
\nabla^2 \psi_\ell = \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi_\ell}{\partial r} \right) - \frac{\ell(\ell + 1) - C}{r^2} \right] \psi_\ell
\]

\[
= [\ell(\ell + 1) - C] \frac{1}{r^2} \psi_\ell
\]

\(\Rightarrow C = \ell(\ell + 1) \)

\(\psi_\ell(\theta, \phi) = \psi_\ell/r^\ell \) is a spherical harmonic of order \(\ell \).