HIDDEN SYMMETRY OF THE HYDROGEN ATOM

As we have seen, the spherical symmetry of the two-body central force problem made the orbital angular momentum a constant of the motion and thereby imposed a $2\ell + 1$ degeneracy of the energy levels for given n and ℓ values. However, for the hydrogen atom there is a further degeneracy between levels with the same n but different ℓ values. Here we wish to show that this degeneracy is due to a "hidden symmetry" which introduces another constant of the motion. Classically, this constant appears because the bound orbits for an attractive $1/r$ potential close on themselves (whereas in general the orbits are open and precess). Thus, for the Bohr model of the hydrogen atom the electron orbit is an ellipse in a plane perpendicular to L and a vector R along the semimajor axis is another constant of motion. We first examine the classical problem and evaluate R, which is called the Lenz vector. Then we reconsider the quantum treatment and show how this extra constant of the motion accounts for the special degeneracy.

Classical hydrogen atom

For the general two-body central force problem we have

$$E = \frac{1}{2}\mu \dot{r}^2 + \frac{L^2}{2\mu r^2} + V(r)$$

$$L = \mu r^2 \dot{\phi}$$

To obtain the orbit equation, we solve for \dot{r} and $\dot{\phi}$ and take their ratio to eliminate time. Hence find

$$\phi = \phi_0 + \int_{r_0}^{r} \frac{(L/\mu r^2) dr}{\sqrt{2[E - \frac{L^2}{2\mu r^2} - V(r)]^{1/2}}}$$

where r_0, ϕ_0 denotes some point on the orbit.
Hidden Symmetry – 2

Now take \(V(r) = -\frac{e^2}{r} \) and substitute \(u = \frac{1}{r} \), find

\[
\phi = \phi' - \int \frac{du}{\left[L^2 E + \frac{2ue^2}{L^2} u - u^2 \right]^{1/2}}
\]

where the integral has been left indefinite by introducing the integration constant \(\phi' \)

The integral now has a standard form,

\[
\int \frac{dx}{\left[a + bx + cx^2 \right]^{1/2}} = \frac{1}{\sqrt{-c}} \arccos \left[\frac{-(b + 2cx)}{\sqrt{q}} \right], \text{ with } q = b^2 - 4ac.
\]

Here \(a = \frac{2ue^2}{L^2} \), \(b = \frac{2ue^2}{L^2} \), \(c = -1 \) and \(q = \left(\frac{2ue^2}{L^2} \right)^2 \left[1 + \frac{2EL^2}{ue^4} \right] \)

Thus find

\[
\phi = \phi' - \arccos \left(\frac{\left(\frac{1}{ue^2} - 1 \right)}{(1 + \frac{2EL^2}{ue^4})^{1/2}} \right)
\]

The orbit equation therefore is

\[
\frac{1}{r} = \frac{ue^2}{L^2} \left[1 + \left(1 + \frac{2EL^2}{ue^4} \right)^{1/2} \cos(\phi - \phi') \right]
\]

This has the form of a conic section with one focus at the origin,

\[
\frac{1}{r} = C[1 + \epsilon \cos(\phi - \phi')]
\]

where \(C = \frac{ue^2}{L^2} \)

For \(\epsilon > 1 \) or \(E > 0 \) have hyperbola \(\epsilon = \left(1 + \frac{2EL^2}{ue^4} \right)^{1/2} \)

\(\epsilon = 1 \) or \(E = 0 \) " parabola

\(\epsilon < 1 \) or \(E < 0 \) " ellipse = eccentricity

and for

\(\epsilon = 0 \) or \(E = -\frac{ue^2}{2L^2} \) have circle

In order to locate the semimajor axis of the ellipse along \(\phi = 0 \) and \(\phi = \pi \), must take \(\phi' = 0 \).

We now consider another derivation of the orbit equation which will prove useful in evaluating the Lenz vector. From Newton's Second Law,

\[
\mu \ddot{x} = F_x = -\frac{e^2}{x^2} \cos \phi = -\frac{ue^2}{L} \dot{\psi} \cos \phi
\]

\[
\mu \ddot{y} = F_y = -\frac{e^2}{y^2} \sin \phi = -\frac{ue^2}{L} \dot{\psi} \sin \phi
\]
Thus
\[p_x = \mu \dot{x} = -\frac{ue^2}{L} \sin \phi + A \]
\[p_y = \mu \dot{y} = \frac{ue^2}{L} \cos \phi + B \]
where A & B are integration constants

Since
\[x = r \cos \phi \pm \dot{x} = r \dot{\cos \phi} - r \dot{\sin \phi} \]
\[y = r \sin \phi \quad \dot{y} = r \dot{\sin \phi} + r \dot{\cos \phi} \]

Eliminate \(\dot{r} \) by
\[-x \sin \phi + y \cos \phi = r \dot{\phi} = \frac{1}{\mu r} \]

So find
\[\frac{1}{r} = \frac{ue^2}{L^2} - \frac{A}{L} \sin \phi + \frac{B}{L} \cos \phi \]

Again the conic section formula. In order to make \(r \) attain its minimum \((r_-)\) and maximum \((r_+)\) values at \(\phi = \pi \) and \(\phi = 0 \), respectively, need \(A = 0 \).
Thus
\[\frac{1}{r} = \frac{ue^2}{L^2} [1 + \frac{BL}{\mu} \cos \phi] \]

Comparison with previous result gives \(\frac{BL}{\mu e^2} = \varepsilon \).

The **Lenz vector** is defined by
\[\mathbf{R} = \frac{1}{\mu} (p_x \mathbf{L} - V(r) \mathbf{L}) \]

with \(V(r) = -\frac{e^2}{r} \)

Let us verify that this points along the semimajor axis of the elliptical orbit, i.e., along the x-axis. Note \(L_x = L_y = 0 \) and \(p_z = 0 \)
\[(p_x \mathbf{L}) = p_y \mathbf{L} \hat{x} - p_x \mathbf{L} \hat{z} + 0 \]

Thus
\[\mathbf{R} = \left(\frac{p_y \mathbf{L}}{\mu} - \frac{e^2}{r} \hat{x} \right) \hat{x} + \left(\frac{p_x \mathbf{L}}{\mu} - \frac{e^2}{r} \hat{y} \right) \hat{y} \]
\[\mathbf{R} = \frac{L}{\mu} (p_y - \frac{ue^2}{L} \cos \phi) \hat{x} - \frac{L}{\mu} (p_x + \frac{ue^2}{L} \sin \phi) \hat{y} \]

Use now the results derived above, \(p_x = -\frac{ue^2}{L} \sin \phi \)
\[p_y = \frac{ue^2}{L} \cos \phi + B \]

Find
\[\mathbf{R} = \frac{L}{\mu} B \hat{x} + 0 \]

The Lenz vector points along the x axis and has magnitude
\[\frac{L}{\mu} B = e^2 \varepsilon = \left[e^4 + \left(\frac{2E L^2}{\mu} \right) \right]^{1/2}, \]

proportional to the coefficient of \(1/r\) in the potential and the eccentricity of the orbit.

\[\varepsilon = \frac{\sqrt{a^2-b^2}}{a} = \left(1 + \frac{2EL^2}{\mu e^2} \right)^{1/2} \]

\[r_+ = a(1+\varepsilon) \]
\[r_- = a(1-\varepsilon) \]
\[a = -\frac{e^2}{2E} = \frac{e^2}{2|E|} \]
\[b = a(1-e^2)^{1/2} \]

or
\[b = \frac{L^2}{\mu e^2}. \]

Note \(R \cdot L = 0 \)

Quantum hydrogen atom

The Hamiltonian operator corresponding to the classical Lenz vector is

\[R = \frac{1}{2\mu} (p \times L - L \times p) - \frac{e^2}{r} \]

Note: In symmetrizing the classical expression, use \(p \times L = -L \times p \)

It is readily shown that this is a constant of the motion, i.e. that \([R, H] = 0\). Also, the following properties of \(R \) can be proved:

\[R^2 = e^4 + \frac{2H(L^2 + \eta^2)}{\mu} \]

\[R \cdot L = L \cdot R = 0 \]

\[[R_i, R_j] = i\hbar \varepsilon_{ijk} L_k \]

\[[R_i, L_j] = \hbar \varepsilon_{ijk} R_k \]

Note that the quantum result for the square of the Lenz vector differs from the classical result \(R^2 = e^4 + \frac{2EL^2}{\mu} \), only by replacing \(L^2 \) by \(L^2 + \eta^2 \) and \(E \) by \(H \). The problem has the unusual feature that the Hamiltonian can be written in terms of other constants of the motion, \(R^2 \) and \(L^2 \).

It is convenient to absorb the factor \(-2H/\mu\) by redefining the Lenz vector as

\[\kappa = \left(\frac{-\mu}{2H} \right)^{1/2} R. \]
Hidden Symmetry - 5

This is Hermitian when acting on eigenstates of \(H \) with negative eigenvalues (the states of interest here). It is also a constant of motion, as the operator \((-\mu/2H)^{1/2}\) commutes with \(\vec{R} \) and \(\vec{L} \). Now the formula for the square of the Lenz vector can be recast to obtain

\[
H = -\frac{\mu e^4}{2(K^2+L^2+\bar{R}^2)}
\]

Already we recognize the resemblance to the formula for energy eigenvalues.

The commutation relations obeyed by \(\vec{K} \) and \(\vec{L} \) are

\[
\begin{align*}
[K_i, K_j] &= i\hbar \epsilon_{ijk} L_k \\
[K_i, L_j] &= i\hbar \epsilon_{ijk} K_k \\
[L_i, L_j] &= i\hbar \epsilon_{ijk} L_k
\end{align*}
\]

These can be further simplified by defining the quantities

\[
M = \frac{1}{2}(L+K) \quad \text{and} \quad N = \frac{1}{2}(L-K)
\]

for which we find

\[
\begin{align*}
[M_i, M_j] &= i\hbar \epsilon_{ijk} M_k \\
[N_i, N_j] &= i\hbar \epsilon_{ijk} N_k \\
[M_i, N_j] &= 0
\end{align*}
\]

Thus \(M \) and \(N \) each obey the commutation rules for an angular momentum operator and commute with each other as well as with \(H \). Also, since \(\vec{K} \cdot \vec{L} = 0 \) we have \(M^2 = N^2 = \frac{1}{2}(L^2+K^2) \) and the Hamiltonian is given by

\[
H = -\frac{\mu e^4}{2(M^2+2N^2+\bar{R}^2)}
\]

Since \(M \) and \(N \) obey angular momentum commutation rules, we already know how to construct their eigenstates and eigenvalues. We can obtain simultaneous eigenstates of \(M^2, M_Z, N^2, \) and \(N_Z \). These we denote by \(|mM_u\rangle \), where

\[
\begin{align*}
M^2 |mm_u\rangle &= \hbar^2 m(m+1) |mm_u\rangle \\
N^2 | " \rangle &= \hbar^2 \rho(\rho+1) | " \rangle \\
M_Z | " \rangle &= \hbar \mu | " \rangle \\
N_Z | " \rangle &= \hbar \nu | " \rangle
\end{align*}
\]
Both \mathcal{M} and \mathcal{N} can take on the values 0, $\frac{1}{2}$, 1, $\frac{3}{2}$, ... whereas for each \mathcal{M}-value μ has the values

$$-\mathcal{M}, -\mathcal{M}+1, ..., \mathcal{M} - 1, \mathcal{M}$$

(2\mathcal{M} + 1 values)

and for each \mathcal{N}-value ν has

$$-\mathcal{N}, -\mathcal{N}+1, ..., \mathcal{N} - 1, \mathcal{N}$$

(2\mathcal{N} + 1 values)

However, as noted above the condition $R \cdot L = 0$ or $K \cdot L = 0$ requires that $M^2 = N^2$, so the only eigenstates relevant to the bound states of the hydrogen atom have $\mathcal{M} = \mathcal{N}$. These states $|\mathcal{M}\mathcal{N}\mu\nu\rangle$ are eigenstates of \hat{H} since

$$\hat{H} |\mathcal{M}\mathcal{N}\mu\nu\rangle = -\frac{\mu e^4}{2\hbar^2 [4\mathcal{M}(\mathcal{M}+1)+1]} |\mathcal{M}\mathcal{N}\mu\nu\rangle$$

and hence the energy eigenvalues are given by

$$E = -\frac{\mu e^4}{2\hbar^2 (2\mathcal{M}+1)^2}$$

where $2\mathcal{M}+1$ is the principle quantum number n, with values 1, 2, 3...

For a fixed value of $\mathcal{M} = \mathcal{N}$, there are $2\mathcal{M}+1$ different μ values and $2\mathcal{M}+1$ different ν values. Thus there are $(2\mathcal{M}+1)(2\mathcal{N}+1) = n^2$ different states with the same energy, E_n.

Note that the $|\mathcal{M}\mathcal{N}\mu\nu\rangle$ are eigenstates of L_z and K_z but not eigenstates of L^2 or K^2. These states are linear combinations of the $|n\ell m\rangle$ hydrogen atom states with fixed n and m but different ℓ values. The $|\mathcal{M}\mathcal{N}\mu\nu\rangle$ states provide the appropriate representation for treating the Stark effect, in which the electric field perturbation mixes the degenerate $|n\ell m\rangle$ states.

The special degeneracies found for the isotropic oscillator can be analyzed in the same fashion. Again, the classical orbits are closed and elliptical so the Lenz vector is a constant of the motion.

The degeneracy of the hydrogen atom levels may also be treated by elegant group theory methods. The appropriate symmetry group proves to be the four-dimensional rotation group. This occurs because the six generators of infinitesimal rotations in four-space involve two angular momentum vectors with the same commutation relations as L and L.

References:

Baym, Lectures on Quantum Mechanics.