Measurement of Spin-Polarized Observables in the β^+ decay of 37K

Benjamin Fenker

Texas A&M University Cyclotron Institute

June 18, 2014
Outline

- Brief physics goals
- Outline of TRINAT’s double-MOT system
- Overview of recent run
Motivation: Fundamental Symmetries

- Standard model weak interaction is strictly Vector − Axial-Vector (V − A)
 - Parity is conserved in strong and EM interactions but violated in weak ones?
 - $SU(2)_L \otimes U(1)_Y \rightarrow SU(2)_R \otimes SU(2)_L \otimes U(1)_Y$
- Angular correlations in β-decay are sensitive to new physics

$$\frac{d^5 W}{dE d\Omega_e d\Omega_\nu} \sim 1 + a_{\beta\nu} \frac{\rho_e \rho_\nu \cos(\theta_{e\nu})}{E_e E_\nu} + b \frac{m_e}{E_e} + P \left(A_{\beta} \frac{\rho_e}{E_e} \cos(\theta_e) + B_{\nu} \frac{\rho_\nu}{E_\nu} \cos(\theta_\nu) \right)$$

Unpolarized

Polarized

$A_{\beta}^{SM} = -0.5702(6)$
$B_{\nu}^{SM} = -0.7692(15)$
TRINAT’s x2-MOT system

Collection trap is coupled to ISAC beamline

To avoid backgrounds from untrapped atoms, transfer to second trap for precision measurement
Overview

- Magneto-Optical Trap (MOT)
 - Provides a cold (∼ 1 mK), localized (∼ Ø1 mm) source of atoms
 - Shallow trap so products emerge unperturbed

![Diagram of Polarization Axis and Nuclear Detectors](Image)
Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
 - σ^\pm lasers drive biased random walk towards $P_{\text{nucl}} = \pm 1$

Benjamin Fenker
Measurement of Spin-Polarized Observables in the β^+ decay of 37K
Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
- Nuclear Detectors
 - β-telescopes measure position, energy along polarization axis

Benjamin Fenker
Measurement of Spin-Polarized Observables in the β^+ decay of 37K
Types of events

- **Silicon Strip Detector**
- **BC408 Plastic Scintillator**

\[\vec{B} \]

\[\vec{E} \]

- **Shakeoff** e⁻
- **Ar⁺**

- **Nuclear polarization**

\[\beta^+ \text{ in coincidence with either MCP} \]
\[\nu \text{ is unobserved} \]

- **Only able to bias one MCP at a time**
- **Development to bias both will reduce background and systematics**
Types of events

- Monitor of trap position, size, temperature
- Ultra-clean measure of nuclear polarization
- Only able to bias one MCP at a time
- Development to bias both will reduce background and systematics
Photoionization signal

With time-of-flight and position cuts, this signal is very clean.
Optical Pumping

- Stretched state has $F = 2$, $M_F = 2$ or equivalently $I_z = \frac{3}{2}$, $J_z = \frac{1}{2}$
- An atom in this state is dark to the laser light and is trapped
- This state corresponds to total atomic and nuclear polarization

\[\begin{align*}
\begin{array}{c}
F_z = -2 \\
F_z = -1 \\
F_z = 0 \\
F_z = 1 \\
F_z = 2 \\
\end{array}
\end{align*} \]

\[\begin{align*}
\\} P_{1/2} \\
\{ F = 1 \\
\{ F = 2 \\
\{ F = 1 \\
\{ F = 2 \\
\end{align*} \]

\[\begin{align*}
\\\} P_{3/2} \\
\{ F = 1 \\
\{ F = 2 \\
\end{align*} \]
Optical Pumping

- Stretched state has $F = 2$, $M_F = 2$ or equivalently $I_z = \frac{3}{2}$, $J_z = \frac{1}{2}$
- An atom in this state is dark to the laser light and is trapped
- This state corresponds to total atomic and nuclear polarization

Energy

355 nm light

$P_{3/2}$

$P_{1/2}$

$S_{1/2}$

$F = 2$

$F = 1$

Angular Momentum F_z

$F_z = -2$ $F_z = -1$ $F_z = 0$ $F_z = 1$ $F_z = 2$
Polarized measurements must be done with MOT off. When MOT is off, cloud expands; therefore alternate counting/trapping.

Photoion events and duty cycle

- Quench B
- Optical Pumping
- MOT Collects, Cools

$\sigma \sim 0.9 \text{ mm}$
This great signal allows clean measurement of polarization. Online analysis gives \(P \gtrsim 0.990 \), but that is not even the full data set.

\[
t_{\text{op}} = 734 \ \mu s
\]
\[
B_{\text{bad}} = 0.012(5)(3)
\]
\[
\chi^2/581 = 1.044
\]
\[
\text{C.L.} = 22\%
\]
β+ energy spectrum

- Coincidence with silicon detector will reduce 511 background
- Have enough β-electron coincidences for < 0.5% measurement

300 μm thick 40 × 40 mm² silicon strip detector

β+ decay of 37 K
Recoil Ar\(^+\) time-of-flight spectrum

Recoiling Ar ion is swept to rMCP and detected in coincidence with \(\beta\). Time-of-flight spectrum can be used to measure

- Beta-neutrino correlation when \(^{37}\text{K}\) is unpolarized
- \(R_{\text{slow}}\) when \(^{37}\text{K}\) is polarized
Shake-off electron spectroscopy (S1446)

- Electrons deflected 1 cm by field of 2 G
- Position spectrum in perpendicular direction → energy spectrum
TRINAT’s x2 MOT system provides an ideal source of β-decaying atoms for studying fundamental symmetries of the weak interaction

- Highly spin-polarized with clean measurement of polarization
- Multiple physics observables all measured simultaneously
 - β-asymmetry with respect to polarization axis (A_β)
 - β-ν correlation ($a_{\beta\nu}$) with recoil time-of-flight spectrum
 - R_{slow} is a sensitive probe of right-handed currents
 - Shakeoff electron energy spectrum down to a few eV

- Stay tuned, lots of analyses under way!
Acknowledgments

- Collaboration members: Melissa Anholm (TRIUMF), Daniel Ashery (Tel Aviv), Spencer Behling (TAMU), John Behr (TRIUMF), Iuliana Cohen (Tel Aviv), Alexandre Gorelov (TRIUMF), Gerald Gwinner (U of Manitoba), Michael Mehlman (TAMU), Dan Melconian (TAMU), Praveen Shidling (TAMU)

- Thanks to the targets group for developing the HpTiC target
 - Consistently $2 \times 10^8 \ ^{37}K/s!$
 - 5-10 thousand atoms in the trap

- Thanks to Konstantin Olchanski and the DAQ group
Measurement of Spin-Polarized Observables in the β^+ decay of 37K
Measurement of Spin-Polarized Observables in the β^+ decay of 37K