Measurement of the β-asymmetry in the decay of magneto-optically trapped, spin-polarized 37K

Benjamin Fenker

TRIUMF Neutral Atom Trap
Texas A&M University Cyclotron Institute

October 10, 2014
Acknowledgments

The TRINAT Collaboration

- TRIUMF - John Behr, Ioana Craiciu, Alexandre Gorelov, Konstantin Olchanski, Claire Warner
- Texas A & M - Spencer Behling, Michael Mehlman, Dan Melconian, Praveen Shidling
- U of Manitoba - Melissa Anholm, Gerald Gwinner
- Tel Aviv - Daniel Ashery, Iuliana Cohen

TRIUMF & ISAC Target & Beam Delivery Group

Funding Agencies

- USA: DOE DE-FG02-93ER40773 & Early Career ER41747
- Canada: NSERC, NRC through TRIUMF, WestGrid
- Israel: Israel Science Foundation
Testing the standard model with nuclear physics

Overview and recent result
 - Magneto-optical trapping
 - Optical pumping
 - β detection

Outlook, conclusions
Motivation: Fundamental Symmetries

- Search for possible right-handed currents
 - \(SU(2)_L \otimes U(1)_Y \rightarrow SU(2)_R \otimes SU(2)_L \otimes U(1)_Y \)
- Contribute to independent check on the value of \(V_{ud} \)
- Energy dependence tests recoil-order corrections, weak magnetism, second-class currents

Angular correlations in \(\beta \)-decay are sensitive to new physics
- \(10^{-3} \) precision constrains SM extensions, while \(10^{-4} \) has discovery potential

\[
\frac{d^5 W}{dE d\Omega_e d\Omega_\nu} \sim 1 + a_{\beta\nu} \frac{p_e p_\nu \cos(\theta_{ev})}{E_e E_\nu} + b \frac{m_e}{E_e} + P \left(A_\beta \frac{p_e}{E_e} \cos(\theta_e) + B_\nu \frac{p_\nu}{E_\nu} \cos(\theta_\nu) \right)
\]
Why 37K?

- Atomic structure allows for laser-trapping AND optical pumping
- Isobaric analogue decay simplifies nuclear structure corrections
- Strong branch to ground state is a very clean decay
- $I^\pi = \frac{3}{2}^+ \rightarrow \frac{3}{2}^+$ is a mixed Fermi-Gamow Teller decay

$\Delta t_{1/2} = 0.08\%$
(Shidling et al. 2014)
$\Delta BR = 0.14\%$
$\Delta Q_{EC} = 0.003\%$

$^{37}\text{Ar}_{18} \rightarrow ^{37}\text{K}_{19}$

MIRROR
$^{37}\text{K}_{19}$

$^{3/2+}$

$^{5/2+}$

2.07% $Q_{EC} = 3.4$ MeV

97.89% $Q_{EC} = 6.1$ MeV
Why 37K?

- Atomic structure allows for laser-trapping AND optical pumping
- Isobaric analogue decay simplifies nuclear structure corrections
- Strong branch to ground state is a very clean decay
- $I^\pi = \frac{3}{2}^+ \rightarrow \frac{3}{2}^+$ is a mixed Fermi-Gamow Teller decay

\[\Delta t_{1/2} = 0.08\% \]
(Shidling et al. 2014)
\[\Delta BR = 0.14\% \]
\[\Delta Q_{EC} = 0.003\% \]
\[\Delta \mathcal{F}t = 0.18\% \]
\[\Delta \rho = 0.4\% \]

Benjamin Fenker

Measurement of the β-asymmetry in the decay of magneto-optically trapped,37Ar

\[37_{18}Ar_{19} \quad \text{MIRROR} \quad 37_{19}K_{18} \]

β^+

\[3/2^+ \quad 5/2^+ \quad 3/2^+ \]

MIRROR

\[2.07\% \ Q_{EC} = 3.4 \ MeV \]

\[97.89\% \ Q_{EC} = 6.1 \ MeV \]
Why 37K?

- Atomic structure allows for laser-trapping AND optical pumping
- Isobaric analogue decay simplifies nuclear structure corrections
- Strong branch to ground state is a very clean decay
- $I^\pi = \frac{3}{2}^+ \rightarrow \frac{3}{2}^+$ is a mixed Fermi-Gamow Teller decay

$\Delta t_{1/2} = 0.08\%$
(Shidling et al. 2014)
$\Delta BR = 0.14\%$
$\Delta Q_{EC} = 0.003\%$

$\Delta \mathcal{F} t = 0.18\%$
$\Delta \rho = 0.4\%$

$A^\beta(0) = -0.5706(7)$
$\rightarrow \Delta A^\beta = 0.12\%$
Overview

- Magneto-Optical Trap (MOT)
 - Provides a cold ($\sim 1\, \text{mK}$), localized ($\sim \varnothing 1\, \text{mm}$) source of atoms
 - Shallow trap so products emerge unperturbed
Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
 - σ^{\pm} lasers drive biased random walk towards $P_{\text{nucl}} = \pm 1$

Polarization Axis
Nuclear Detectors
Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
- Nuclear Detectors
 - β-telescopes measure position, energy along polarization axis
Optical Pumping

- Stretched state corresponds to atomic and nuclear polarization
- Photoionization is a monitor of excited state population
- Use this to monitor trap size, position, temperature, polarization

355 nm light

E-field

MCP

Energy

Angular Momentum F_z

$F_z = -2$
$F_z = -1$
$F_z = 0$
$F_z = 1$
$F_z = 2$

$F = 1$
$F = 2$

$P_{3/2}$
$P_{1/2}$
$S_{1/2}$

Measurement of the β-asymmetry in the decay of magneto-optically trapped,
Optical Pumping

- Stretched state corresponds to atomic and nuclear polarization
- Photoionization is a monitor of excited state population
- Use this to monitor trap size, position, temperature, polarization

Energy

- $355\,\text{nm light}$
- $\left\{ F = 2 \right\}$
- $\left\{ F = 1 \right\}$
- $P_{3/2}$
- $P_{1/2}$
- $S_{1/2}$
- $\left\{ F = 2 \right\}$
- $\left\{ F = 1 \right\}$

Angular Momentum F_z

- $F_z = -2$
- $F_z = -1$
- $F_z = 0$
- $F_z = 1$
- $F_z = 2$
Photoions monitor trap parameters

- Polarized measurements must be done with MOT off
- With MOT off, cloud expands; alternate counting/trapping

![Graph showing photoion events over time and Z position](image)
This strong signal allows clean measurement of polarization. Preliminary analysis gives $P = 0.994(3)$ with not even the full data set.
Scintillators record full energy; backgrounds from untrapped atoms, annihilation

Shake-off electron MCP tags events that decay from the trap

Silicon detectors suppress background from γs
- Scintillators record full energy; backgrounds from untrapped atoms, annihilation
- Shake-off electron MCP tags events that decay from the trap
- Silicon detectors suppress background from γs

![Energy vs Counts](chart.png)
Scintillators record full energy; backgrounds from untrapped atoms, annihilation
Shake-off electron MCP tags events that decay from the trap
Silicon detectors suppress background from γs
Scintillators record full energy; backgrounds from untrapped atoms, annihilation

Shake-off electron MCP tags events that decay from the trap

Silicon detectors suppress background from γs
Comparison with Geant4

Counts

PRELIMINARY

Energy [keV]

Data
Geant4 Simulation

β-asymmetry in the decay of magneto-optically trapped,
Improvements from 2012 run

- Increased target yield, trapping efficiency: $\langle N_{37} \rangle = 8900$
- More than double the MOT lifetime, $t_{1/2}^{\text{trap}} = 3.8(1)$ s
- Enough statistics for $< 0.5\%$ measurement of A_β
- Simultaneously measure $a_{\beta\nu}$ and β-recoil asymmetry

Time [ms]

<table>
<thead>
<tr>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

β-decay events / cycle (summed)

Set A: $t_{1/2}^{\text{trap}} = 3.6(4)$ s

Rel. Counts

- $a_{\beta\nu}^{\text{SM}} = 0.6661$
- $a_{\beta\nu}^{\text{SM}} + 10\%$
Preliminary Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>% Uncert.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetry (Stat.)</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Polarization (Stat.)</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>0.07</td>
<td>Est. from 2012 Data</td>
</tr>
<tr>
<td>Silicon Threshold</td>
<td>0.07</td>
<td>Est. from 2012 Data</td>
</tr>
<tr>
<td>Cloud Position</td>
<td>0.17</td>
<td>Est. from 2012 Data</td>
</tr>
<tr>
<td>Dead time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scattering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Nearing completion of analysis of first (2%) measurement of A_β
- Second round of data enough for $<0.5\%$ measurement
- The goal of measuring correlation parameters to 0.1% is in sight
TRINAT’s x2-MOT System

- Collection trap is coupled to TRIUMF-ISAC beam line
- Transfer atoms to second trap for precision measurement
Types of events

- Silicon Strip Detector
- BC408 Plastic Scintillator
- Shakeoff e^-
- Nuclear polarization
- β^+ in coincidence with either MCP
- ν is unobserved

- Only able to bias one MCP at a time
- Development to bias both will reduce background and systematics
Types of events

- Monitor of trap position, size, temperature
- Ultra-clean measure of nuclear polarization

- Only able to bias one MCP at a time
- Development to bias both will reduce background and systematics

Benjamin Fenker
Measurement of the β-asymmetry in the decay of magneto-optically trapped...