These are a list of basic things you need to know for the final. Do you recall the basic formulas?

- Draw proper free-body diagrams
 - Choose wisely the coordinate axes and draw the forces.
 - Identify the action/reactions pairs of the problem.
- Description of movement
 - Position, velocity and acceleration
 - 1-D: Can you get them from a plot of X Vs T as in Exam 1?
 - N-D: Can you get them from a plot of X Vs Y as a function of t as in Quiz 1?
 - Circular motion, definition
 - Relationship between linear and angular acceleration and velocity.
- Equations of motion
 - Sum of external forces = ma = dP/dt
 - Sum of external torques = I alpha = dL/dt
 - (may also need v=R, or a=alphaR)
- Kinetic energy,
 - Units
 - Translational
 - Rotational
- Work-energy theorem
 - Units
 - When is the mechanical energy conserved
 - Potential energies
 - Relationship with their force
 - Relation between potential energies and work of forces
- Linear momentum P:
 - Definition and Units
 - Calculation of P in several problems
 - What is P for a particle?
 - What is P for a system of particles?
 - What is P for a rigid body?
 - Relationship to forces
 - When is momentum P conserved?
- Moment of Inertia
 - Definition and units
 - For a particle
 - For a rigid body
 - Parallel axis theorem
- Angular momentum L:
 - Definition and units
• Calculation of L in several problems (you should be able to answer these for any choice of coordinate system)
 ▪ What is L for a particle moving with a given velocity?
 ▪ What is L for an object moving with a given velocity?
 ▪ What is L for an object rotating around its center of mass?
 ▪ What is L for an object that has translational and rotational components?
• Relationship to torques
• When is angular momentum L conserved?
• Collisions: Elastic/Inelastic
 ▪ What quantities are conserved?
• Gravitation
 ▪ Forces
 ▪ In what situation the force between two solids objects is exactly the force between to particle-objects?
 ▪ Potential
 ▪ In the surface of a planet
 ▪ In the long distances
 ▪ What’s the range of movement of a planet with given mechanical energy E? What does it mean that an object has energy >0? and what that E<0?
 ▪ Find the escape velocity for objects at distance r from a sun.
• Kepler’s laws.
 ▪ Know the three laws.
 ▪ Understand the ellipses, and the relation between position of foci and eccentricities.
 ▪ Know qualitatively how a planet orbits around a sun.
 ▪ Can you use the second law in such a way to predict the angular velocity of a planet around the sun depending on the position on the orbit?
• Periodic Motion(pendulum, etc)
 ▪ What is the typical equation and what is the solution
 ▪ How do you determine the constants of Amplitude and phase?
• Waves.
 ▪ Characteristic equation
 ▪ Solution to equations.