Flavor Violation at the LHC

Bhaskar Dutta

Texas A&M University

Sixth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - FPCapri2016, June 13th, 2016
1. Colored, Non colored particles bounds and possible search strategies, cascade decays, VBF, monojet etc.

2. Lepton Flavor Violation and Sources in Models

3. Establishing LFV at the LHC
Higgs search results, $m_h : 126$ GeV

- in the tight MSSM window < 135 GeV

$m_{\tilde{q}}$ (1st gen.) $\sim m_{\tilde{g}} \geq 1.7$ TeV

\tilde{t}_1 produced from \tilde{g}, $m_{\tilde{t}_1} \geq 700$ GeV

\tilde{t}_1 produced directly, $m_{\tilde{t}_1} \geq 660$ GeV (special case)

$\tilde{e} / \tilde{\mu}$ excluded between 110 and 280 GeV for a mass-less $\tilde{\chi}_1^0$ or for a mass difference > 100 GeV, small ΔM is associated with small missing energy

$\tilde{\chi}_1^\pm$ masses between 100 and 600 GeV are excluded for mass-less $\tilde{\chi}_1^0$ for $\tilde{\chi}_1^\pm$ or for the mass difference > 40 GeV decaying into e/μ
The signal:

jets + leptons + t’s + W’s + Z’s + H’s + missing E_T

Colored particles can be produced and they decay into the weakly interacting stable particle.

The p_T of jets and leptons depend on the sparticle masses which are given by models.

High p_T jet

[Mass difference is large]
Non-colored in cascade

\[\varepsilon_\tau = 50\%, \ f_{\text{fake}} = 1\% \text{ for } p_T^{\text{vis}} > 20 \text{ GeV} \]

\(E_T^{\text{miss}} + 2j + 2\tau \) Analysis Path

- Cuts to reduce the SM backgrounds (W+jets, ...)
 \[E_T^{\text{miss}} > 180 \text{ GeV}, \ N(\text{jet}) \geq 2 \text{ with } E_T > 100 \text{ GeV} \]
 \[E_T^{\text{miss}} + E_T^{j1} + E_T^{j2} > 600 \text{ GeV}; \ N(\tau) \geq 2 \text{ with } p_T^{\tau} > 40, 20 \text{ GeV} \]

- CATEGORIZE opposite sign (OS) and like sign (LS) ditau events

- OS\(\tau\) \(M_\tau\) histogram
- LS \(\tau\) \(M_\tau\) histogram

Arnowitt, Dutta, Gurrola, Kamon, Krislock and Toback’06,07,08,09
Non-Colored sector: LHC

Challenge:

- How can we probe the colorless SUSY sector if the first two generations are heavy?

- Not so large $\Delta M(\equiv m_\tilde{l} - m_\tilde{\chi}_1^0) \Rightarrow$ Smaller Missing energy

- VBF topology: Tagging VBF jets

- ISR+ missing $E_T + e, \mu, \tau, b, t$ etc.
FIG. 5. The statistical significance (S/\sqrt{B}) after all cuts, as a function of the slepton mass, for three mass splittings (denoted Δm). An integrated luminosity of 100 fb$^{-1}$ at LHC 14 is assumed. Left: left-handed slepton; right: right-handed slepton. Two generations of sleptons (selectrons and smuons) of degenerate masses are included.

Han, Liu, 2015
TABLE III: Summary of the effective cross-section (fb) and significances, with 3000 fb$^{-1}$ after all cuts for different SUSY points at LHC14. The effective cross-section of total standard model background after all cuts is 0.0020 fb for “exactly 2-muon final state analysis”, and 0.0189 fb for “exactly 1-muon final state analysis”. The significances presented are calculated by means of both “cut and count (CC)” and “shape analysis” methods.

<table>
<thead>
<tr>
<th>ΔM</th>
<th>$m_{\tilde{\ell}}$</th>
<th>$m_{\tilde{\chi}_1^0}$</th>
<th>2-muon final state</th>
<th>1-muon final state</th>
<th>Combined Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[GeV]</td>
<td></td>
<td>Cross-section</td>
<td>Significance</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[fb]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>135</td>
<td>110</td>
<td>0.0014</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>15</td>
<td>135</td>
<td>120</td>
<td>0.0021</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>10</td>
<td>135</td>
<td>125</td>
<td>0.0019</td>
<td>2.1</td>
<td>2.9</td>
</tr>
<tr>
<td>5</td>
<td>135</td>
<td>130</td>
<td>0.0004</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>125</td>
<td>110</td>
<td>0.0024</td>
<td>2.4</td>
<td>3.1</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
<td>115</td>
<td>0.0018</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>120</td>
<td>0.0006</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>115</td>
<td>100</td>
<td>0.0027</td>
<td>2.8</td>
<td>4.1</td>
</tr>
<tr>
<td>10</td>
<td>115</td>
<td>105</td>
<td>0.0021</td>
<td>2.3</td>
<td>3.4</td>
</tr>
<tr>
<td>5</td>
<td>115</td>
<td>110</td>
<td>0.0007</td>
<td>0.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Higgsino type \(\chi_{1,2}^0 \) (cosmologically interesting):

The mass difference between \(\chi_1^0 \) and \(\chi_2^0, \chi_1^\pm \): 10 GeV

ISR+missing \(E_T + \text{Leptons} \)

Baer, Mustafayev, Tata, Phys.Rev. D90 (2014), 115007
LFV in SUSY Models

- LFV can be quite natural in SUSY models

 Neutrino flavor
 Oscillations have been observed

 ![Diagram showing neutrino oscillations](image)

 Borzumati, Masiero (1986)
 Hall, Kostelecky, Raby (1986)
 Hisano, Moroi, Tobe, Yamaguchie (1995)

- The grand unified models, e.g., SU(5), SO(10), intermediate scale models can provide LFV even when the flavor diagonal masses are assumed at high scale

- LFV can be radiatively induced by flavor violating terms in the slepton masses arising from CKM and MNSP.
Seesaw mechanism naturally explains small ν-mass.

$$\mathcal{L} = \bar{\nu}_L M_D \nu_R + \frac{1}{2} \nu_R^T M_R \nu_R + h.c.$$

$$M_\nu = -M_D M_R^{-1} M_D^T$$

Current Neutrino data suggest

$$M_R \sim (10^{12} - 10^{15}) \text{ GeV}$$

Flavor Change in the neutrino sector to explain the data

Flavor change in the charged slepton sector
LFV in SUSY Models

LFV using neutrino couplings:

Dirac neutrino coupling \((Y_\nu \ell \nu^c H_u)\). \(M_D = Y_\nu \nu_u\)

Majorana neutrino coupling : \(f \nu^c \nu^c \Delta\)

\[
M_R = f \nu_{B-L} \quad \text{Where} \quad <\Delta> = \nu_{B-L}
\]

Flavor violation may reside entirely in \(f\) and/or entirely in \(Y_\nu\)

One can express the RGE induced off-diagonal elements of SUSY breaking in terms of \(f\) and \(Y_\nu\)
When flavor violation occurs only in f (Majorana LFV)

$$\Delta m_{ij}^2 (i \neq j) \simeq -\frac{3(m_0^2 + A_0^2)}{32\pi^4}[Y_\nu^\dagger Y_\nu f^\dagger f + f^\dagger Y_\nu^\dagger Y_\nu]_{ij} \left(\ln\frac{M_{Pl}}{M_{B-L}}\right)^2$$

$$A_{\ell ij} (i \neq j) \simeq -\frac{3}{64\pi^4}[A_\ell (Y_\nu^\dagger Y_\nu f^\dagger f + f^\dagger Y_\nu^\dagger Y_\nu)]_{ij} \left(\ln\frac{M_{Pl}}{M_{B-L}}\right)^2$$

When flavor violation occurs only in Dirac Yukawa Y_ν

(with mSUGRA)

$$\Delta m_{ij}^2 (i \neq j) \simeq -\frac{1}{8\pi^2}(3m_0^2 + A_0^2)(Y_\nu^\dagger Y_\nu)_{ij} \left(\ln\frac{M_{Pl}}{M_{B-L}}\right)$$
LFV in SUSY Models

Dashed line: Dirac
Solid line Majorana

Babu, Dutta, Mohapatra, 2002
LFV in SUSY Models

LFV also occurs without neutrino couplings in SUSY GUTS

\[(m_{\tilde{e}_R}^2)_{ij} \approx -\frac{3}{8\pi^2} V_{3i} V_{3j}^* |Y_t|^2 (3m_0^2 + |A_0|^2) \ln\left(\frac{M_P}{M_G}\right)\]

Top quarks and anti-tau leptons are grouped together in SU(5)

Barbieri, Hall, Strumia, 1995
Hisano et al, 1997
The charged slepton mass matrix: 6x6

\[\mathcal{M}_\ell^2 = \begin{pmatrix} \mathcal{M}_{LL}^2 & \mathcal{M}_{LR}^2 \\ \mathcal{M}_{LR}^2 & \mathcal{M}_{RR}^2 \end{pmatrix} \]

\(\mathcal{M}_{LL(RR)}^2 \): 3x3 matrix for the left(right) sleptons soft masses
\(\mathcal{M}_{LR}^2 \): 3x3 matrix for the soft masses: \(m_l(A_l+\mu \tan \beta) \)

In mSUGRA/CMSSM

\[\mathcal{M}_{LL}^2 = \mathcal{M}_{RR}^2 = m_0^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

The off–diagonal elements arising from the radiative corrections produce flavor violation

- Constraints from \(\tau \rightarrow \mu \gamma, \mu \rightarrow e \gamma \) etc
LFV at the LHC

We need to produce charged sleptons at the LHC to measure LFV

- Charged slepton production cross sections are small

- We use the neutralinos and their decays,

\[\tilde{\chi}_2^0 \to \tilde{l}^* l \to l^\pm l^\mp \tilde{\chi}_1^0 \text{ where } l=e, \mu, \tau \]

 - Neutralinos can arise from the squark decays:

\[\tilde{q}_L \to q \tilde{\chi}_2^0 \to q \tilde{l}^* l \to q l^\pm l^\mp \tilde{\chi}_1^0 \]

 - Direct production of \(\tilde{\chi}_2^0 \) is also possible

- We need to have the following subsystem presence in the signal

\[\tilde{\chi}_2^0 - \tilde{l} - \tilde{\chi}_1^0 \]
In the non-LFV scenario
\[\tilde{\chi}^0_2 \rightarrow \tilde{l}^* l \rightarrow l^\pm l^\mp \tilde{\chi}^0_1 \] where l=e, μ, τ

In the LFV scenario, we have in addition
\[\tilde{\chi}^0_2 \rightarrow \tau \mu, e \mu, \tau e + \tilde{\chi}^0_1 \]

We consider a nonzero 2-3 element and we define
\[\delta_{RR,LFV} = \frac{[M^2_{RR}]_{23}}{[M^2_{RR}]_{33}} \]

This LFV will enter into \(\tilde{\chi}^0_2 \), \(\tilde{l} \) decay modes and \(\tau \rightarrow \mu \gamma \) amplitudes

Allahverdi, Dutta, Kamon, 2012
The whole analysis can be scaled by \(\sigma(\tilde{q}_L, \tilde{g})B(\tilde{q}_L, \tilde{g} \rightarrow \tilde{\chi}_2^0) \)

- However, the technique remains the same

\[\sigma(\tilde{q}_L, \tilde{g})B(\tilde{q}_L, \tilde{g} \rightarrow \tilde{\chi}_2^0) \sim 0.1 \text{ pb at 13 TeV LHC} \]

Analysis:

- The final states are characterized by LS and OS tau pair
- We perform OS-LS to remove background
\[m_{\tau\tau}^{\text{max}} = f(m_{\tilde{\tau}_1}, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}) \]

\[
slope(p_{T,\tau}^{\text{vis high}}) = f_2(m_{\tilde{\tau}_1}, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0})
\]

\[
slope(p_{T,\tau}^{\text{vis}}) = f_3(m_{\tilde{\tau}_1}, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}) \text{ which include the average of low and high } p_{T,\tau}^{\text{vis}} \]

\[
slope(p_{T,\tau}^{\text{vis}}) = f_4(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}) : \text{ slope of transverse momentum sum distribution}
\]
Using the observables, we solve for the masses.

Mass measurements for the chosen benchmark point:
\[m_0 = 250 \text{ GeV}, \ m_{1/2} = 350 \text{ GeV}, \ A_0 = 0, \ \tan\beta = 40, \ \mu > 0. \]

<table>
<thead>
<tr>
<th>Particle mass</th>
<th>Solution one</th>
<th>Solution two</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\tau}_1) : 186.7</td>
<td>181.5 ± 3.7(5.1) ± 4.1</td>
<td>205.8 ± 5.9(6.1) ± 5.7</td>
</tr>
<tr>
<td>(\tilde{\chi}_1^0) : 141.5</td>
<td>140.6 ± 5.4(6.5) ± 6.2</td>
<td>151.4 ± 6.4(8.6) ± 6.3</td>
</tr>
<tr>
<td>(\tilde{\chi}_2^0) : 265.8</td>
<td>265.3 ± 6.2(8.5) ± 7.3</td>
<td>278.9 ± 9.2(11.7) ± 9.0</td>
</tr>
</tbody>
</table>

- The statistical uncertainties are for \(\mathcal{L} = 1000(300) \ fb^{-1} \)

- The systematic uncertainties are due to a jet energy scale mismeasurement of 3%

- Two solutions due to non-linear equations
We now investigate the effect of $\delta_{RR,LFV}$

The presence of this term allows:

$$\tilde{\chi}_2^0 \rightarrow \tilde{l}_1\tau, \quad \tilde{l}_1 \rightarrow \mu\tilde{\chi}_1^0$$

$\Rightarrow \tilde{\chi}_2^0 \rightarrow \mu\tau + \text{missing } E_T$, where missing $E_T: \tilde{\chi}_1^0$

So the final states contain muons

- However the tau decays also contain muons: $\tau = \nu_\tau \bar{\nu}_\mu \mu$
 $$\tilde{\chi}_2^0 \rightarrow \tau\bar{\tau} + \tilde{\chi}_1^0 \rightarrow \mu\tau + \text{missing } E_T, \quad E_T: \tilde{\chi}_1^0, \nu_\tau \bar{\nu}_\mu$$
 \Rightarrow Missing E_T in the background

- We need to separate these extra muons from the tau decays
 \Rightarrow complicated analysis
The effect of $\delta_{RR,LFV}$ on our benchmark points

<table>
<thead>
<tr>
<th>$\delta_{RR,LFV}$ (%)</th>
<th>$m_{\tilde{\ell}_1}$ (GeV)</th>
<th>$B(\ell_1 \to \mu \chi_1^0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>186.7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>186.3</td>
<td>4.9×10^{-4}</td>
</tr>
<tr>
<td>5</td>
<td>186.0</td>
<td>3.1×10^{-3}</td>
</tr>
<tr>
<td>10</td>
<td>185.1</td>
<td>1.2×10^{-2}</td>
</tr>
<tr>
<td>15</td>
<td>183.5</td>
<td>2.6×10^{-2}</td>
</tr>
</tbody>
</table>

- The values of $\delta_{RR,LFV}$ larger than 15% violate the $B(\tau \to \mu \gamma) \leq 4.4 \times 10^{-8}$ for our benchmark point

- The change in the stau mass is very small
Analysis plan:

- Take one of the mass points

<table>
<thead>
<tr>
<th>Particle mass</th>
<th>Solution one</th>
<th>Solution two</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\tau}_1$</td>
<td>$186.7 \pm 3.7(5.1) \pm 4.1$</td>
<td>$205.8 \pm 5.9(6.1) \pm 5.7$</td>
</tr>
<tr>
<td>$\tilde{\chi}^0_1$</td>
<td>$141.5 \pm 5.4(6.5) \pm 6.2$</td>
<td>$151.4 \pm 6.4(8.6) \pm 6.3$</td>
</tr>
<tr>
<td>$\tilde{\chi}^0_2$</td>
<td>$265.8 \pm 6.2(8.5) \pm 7.3$</td>
<td>$278.9 \pm 9.2(11.7) \pm 9.0$</td>
</tr>
</tbody>
</table>

- Determine the $\tilde{\chi}^0_2, \tilde{\tau}_1, \tilde{\chi}^0_1$ masses by using various observables

- Generate the $m_{\tau\mu}$ distribution from $m_{\tau\tau}$ by using a transfer function

- Subtract the determined $m_{\tau\mu}$ and from the observed $m_{\tau\mu}$ distributions

- Determine the amount of flavor violation
The $\tau\tau$ (left) and $\tau\mu$ (right) invariant mass distribution for the LHC simulated $\delta_{RR,LFV}=0$ point (first solution)

The distribution is for an integrated luminosity of 1000 fb$^{-1}$
LFV at LHC

- Use the transfer function to transform the \(m_{\tau\tau}^{Non-LFV} \) distribution into a \(m_{\tau\mu}^{Non-LFV} \) shape
- Subtract the distribution from the \(m_{\tau\tau}^{data} \) distribution

- The \(\tau-\mu \) mass distribution for \(\delta_{RR,LFV}=0.15 \).
- Dashed is the second solution

- Comparison of the determined \(m_{\tau\mu} \) with true \(m_{\tau\mu} \)
Keeping \(\sigma(\bar{q}_L, \bar{g})B(\bar{q}_L, \bar{g} \rightarrow \tilde{\chi}_2^0) \) same:

<table>
<thead>
<tr>
<th>(\delta_{RR, L_{LFV}}) (%)</th>
<th>(B(\ell_1 \rightarrow \mu \tilde{\chi}_1^0))</th>
<th>(\mathcal{L}) (fb(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(3.1 \times 10^{-3})</td>
<td>8390</td>
</tr>
<tr>
<td>10</td>
<td>(1.2 \times 10^{-2})</td>
<td>2170</td>
</tr>
<tr>
<td>15</td>
<td>(2.6 \times 10^{-2})</td>
<td>1000</td>
</tr>
<tr>
<td>32</td>
<td>(1 \times 10^{-1})</td>
<td>260</td>
</tr>
<tr>
<td>45</td>
<td>(2 \times 10^{-1})</td>
<td>130</td>
</tr>
</tbody>
</table>

For more than 2\(\sigma \) significance
Conclusion

- Search for LFV requires the production of non-colored particles
- If the colored particles are within reach then the non colored particles can be probed from the cascade decays
- When colored particles are heavy, the non-colored states need to be produced directly, VBF, ISR + missing $E_T + X$
- SUSY models have many sources to produce LFV
- Establishing LFV at the LHC can be possible