Extragalactic and Galactic Gamma-Rays and Neutrinos from Dark Matter Annihilation

Bhaskar Dutta

Based on works with Sheldon Campbell and Eiichiro Komatsu

Department of Physics & Astronomy
Texas A&M University
We are about to enter into an era of major discovery.

Dark Matter: we need new particles to explain the content of the universe.

Standard Model: we need new physics.

Supersymmetry solves both problems!

The super-partners are distributed around 100 GeV to a few TeV.

LHC: directly probes TeV scale.

Fermi, IceCube are probing this scale indirectly through DM annihilation into photons, neutrinos [This talk].

Direct detection [XENON, CDMS, Cogent etc.] are also probing the new physics scale.
Recent Higgs search results from Atlas and CMS indicate excess of events beyond background which is consistent with a Higgs mass of around 125 GeV

- in the tight MSSM window: 115-135 GeV

squark mass (first generation) \sim gluino mass \geq 1 TeV

For heavy squark mass, gluino mass is \geq 700 GeV

stop (squark) produced from gluinos, stop mass \geq 400 GeV

stop (squark) produced directly, stop mass \geq 180 GeV
Models for This Talk

1. mSUGRA/CMSSM: neutralino dark matter

 4 parameters + sign: m_0, $m_{1/2}$, A_0, $\tan\beta$ and $\text{Sign}(\mu)$

2. $\text{SU}(3)_c \times \text{SU}(2)_L \times \text{U}(1)_Y \times \text{U}(1)_{B-L}$

Motivations for B-L models:
B-L models are used (for several decades) to explain Neutrino mass

 Right handed neutrino and corresponding sneutrino are included in this model

 $$ W = W_{\text{MSSM}} + y_D N^c H_u L + f H'_2 N^c N^c + \mu' H'_1 H'_2, $$

 Right sneutrinos can be dark matter candidates
The direct searches at the LHC, the $\text{Br}(B_s \rightarrow \mu \mu)$ measurement from LHC, Tevatron, and direct DM detection experiments are probing the parameter space.

Dutta, Mimura, Santoso

arXiv:1107.3020
mSUGRA Parameter space...

With Higgs mass...
Focus point:

Larger m_0 reduces $\mu \rightarrow$ larger Higgsino component in the neutralino

Annihilation dominantly produces $W^+ W^-$ final states

Stau neutralino Coannihilation:

Annihilation dominantly produces $b\bar{b}, \tau^+ \tau^-$ final states
However, due to the absence of t at present, the annihilation cross-section is smaller than the freeze out time

Sneutrino Annihilation in the B-L model:

Sneutrino annihilation can produce right handed neutrinos \rightarrow decay into left handed neutrinos + Higgs(h)
Calculating γ-ray intensity

Particle side:
Annihilation Cross-section: σv (v: relative velocity), Dark matter mass m_{DM}, Photon spectrum per annihilation $dN_\gamma(E_\gamma) / dE_\gamma$ (Include radiative emission by charged products and decays of unstable products.)

Astro side:
Density Profile (NFW profile: $\rho_h(r) = \frac{\rho_s}{r \left(1 + \frac{r}{r_s}\right)^2}$), \[r_s = \frac{R_{\text{vir}}}{c}\]

Mass function: $dn(z)/dM$ (number densities of M mass halos: Sheth-Tormen), velocity variance profile
\(\gamma \)-ray Intensity....

Extragalactic

\[I_{\gamma, EG}(E_\gamma) = \sigma v \int \frac{dz}{H(z)} W((1 + z)E_\gamma, z) \langle \rho^2 \rangle(z). \]

Intensity Window function:

\[W(E_\gamma, z) = \frac{1}{8\pi m^2} \frac{1}{(1 + z)^3} \frac{dN_{\gamma}}{dE_\gamma}(E_\gamma) e^{-\tau(E_\gamma, z)}, \]

\(\tau(E_\gamma, z) \) is the cosmic opacity to gamma rays

Mean square matter density:

\[\langle \rho^2 \rangle(z) = \int dM \frac{dn}{dM} (M, z) \int d^3r \rho^2_h (r|M, z). \]

\[\rho_h(r|M, z) = \frac{\rho_s(M, z)}{[r/r_s(M, z)][1 + r/r_s(M, z)]^2} \]

\[\frac{dn}{dM} \int d^3r \rho^2_h \left(\frac{\rho^2}{M_\odot} \right) \]

\(z=1 \)

Sheth-Torman
γ-ray Intensity....

Galactic

$$I_{\gamma,G}(E_\gamma, \psi) = \frac{\sigma v}{8\pi m^2} \frac{dN_{\gamma}}{dE_\gamma}(E_\gamma) \hat{J}(\psi)$$

J-factor is the line of sight integration of the square dark matter density

$$\hat{J}(\psi) = \int_{0}^{r_{\text{max}}(\psi)} dr \left[\rho_h \left(\sqrt{r^2 - 2rR_\odot \cos \psi + R_\odot^2} \right) \right]^2$$

$$r_{\text{max}}(\psi) = R_\odot \cos \psi + \sqrt{R_{\text{vir},G}^2 - R_\odot^2 \sin^2 \psi}.$$
Dark Matter Annihilation

Dark matter annihilation cross-section:

\[\sigma v = a + b v^2 \]

\(a, b\) are constants

If S wave is suppressed then the cross-section is dominated by P wave \(\Rightarrow b v^2 \gg a\)

\(\Rightarrow \sigma v\) is much smaller today compared to the freeze-out time

Thermal Relic Density:

At freezeout, \(\sigma v = 3 \times 10^{-26} \text{cm}^3/\text{s}\)

High \(b/a\) lowers the cross-section at small \(v\)

In order to get large annihilation cross-section with large \(b/a\), we need to go to non-thermal scenarios where enhanced annihilation cross-section may be needed to explain the dark matter content

γ-ray (Extragalactic)

At a position r, integrate $\sigma v(r)$ over the local velocity distribution to find the mean

$[\sigma v]_h(r) = a + \lambda b \sigma^2_{uh}(r)$

a, b are fixed to satisfy $\sigma v = a + b v^2_{freeze\ out}$

Use halo velocity profile to find universal halo annihilation cross-section profile

$$\langle I_\gamma \rangle (E_\gamma) = [\sigma v]_0 \int \frac{dz}{H(z)} W((1 + z) E_\gamma, z) \left\langle \rho^2 \left(1 + \frac{\lambda b}{a} \sigma^2_u\right) \right\rangle (z)$$

Where:

$$\left\langle \rho^2 \left(1 + \frac{\lambda b}{a} \sigma^2_u\right) \right\rangle (z) = \int d^3r dM \frac{dn}{dM} (M, z) \rho^2_h(r | M, z) \left[1 + \frac{\lambda b}{a} \sigma^2_{uh}(r | M, z) \right]$$

\(\gamma\)-ray (Extragalactic)

Focus point, \(b/a=1.8\), DM mass 150 GeV

Bulk region, \(b/a=57\), DM mass: 62 GeV

Coannihilation, \(b/a=379\), DM mass: 150 GeV

Coannihilating cross-section is not available at the present time.

\[E_\gamma^2 \langle I_\gamma \rangle \text{ (GeV/cm}^2/\text{s/sr)} \]

\[E_\gamma \text{ \(m_{DM}\)} \]
It is possible to have scenarios where b/a is very large.

\[E_\gamma^2 \langle I_\gamma \rangle \text{ (GeV/cm}^2\text{s/sr)} \]

mSUGRA Coannihilation, $b/a = 4.8$

MSSM x U(1)$_{B-L}$

Sneutrino annihilation via s-channel Z' into fermion anti fermion pair

Galactic and Extragalactic γ–Ray

Focus Point: $\tan\beta=10$; $M_{DM}=150$ GeV

Annihilation is primarily into W^+W^- pair, $\sigma v=1.9 \times 10^{-26}$ cm3/s

- Extragalactic signal is higher at lower energy due to cosmological redshifting
- The relative importance of galactic and extragalactic signal depends on different choices of parameters

Galactic and Extragalactic γ–Ray

$$\frac{I_{\gamma, BG}(E_\gamma)}{I_{\gamma, G}(E_\gamma, \psi)} = \int dz \left[\frac{\langle \rho^2 \rangle(z)}{H(z)(1 + z)^3 \hat{j}(\psi)} \right] \times \left[\frac{dN_\gamma}{dE_\gamma} \left((1 + z)E_\gamma \right) \right] \delta(z_1 - z_2) \delta(\psi - \psi_1)$$

Galactic γ-ray intensity diverges as the line of sight approaches galactic center

However, it will be difficult to observe the dark matter annihilation around that region due to astrophysical contamination

- Substructures can increase the extragalactic signal considerably
We have not included the effects of substructures.

Substructure can increase the annihilation rate by a factor of 100 or so depending on minimum halo mass size.

Based on simulations, substructures would increase the galactic signal by a factor of few.
In MSSM, type models the neutrinos appear from W, b and τ final states from the DM decays

In MSSMx $U(1)_{B-L}$ models: DM particle Sneutrino_R (\tilde{N}) annihilation can produce neutrino final states

- These models may contain small amount of photons

![Diagram of neutrino annihilation](attachment:image.png)

IceCube and Fermi jointly can probe these models
Focus Point: $\tan\beta = 10$; $M_{DM} = 150$ GeV

- The W decays produce a prompt component

- The prompt feature is washed out in the extragalactic spectrum due to redshifting

- Both galactic and extragalactic are contributing in this simplistic scenario

• The galactic signal is much stronger from the galactic center (assuming NFW cusp).

• Similar results for γ-rays.

• Subhalos and uncertainties in the minimum halo scale, halo concentrations, and distribution at the core/cusp need to be appropriately quantified.
Gamma-ray intensity from annihilating 150 GeV dark matter for $\psi > 18^\circ$.

• A model producing W^+W^- is indistinguishable from a model annihilating to $b\bar{b}$.

• The neutrino signal breaks the γ-ray degeneracy between W and b producing annihilations.

• All-sky $\nu+\bar{\nu}$ event rate per detector mass.

• Leptonic W or τ decays produce prompt neutrinos, which are absent from b decays.
Annihilation to Neutrinos

All-sky event rates for 150 GeV sneutrino dark matter that annihilates to two 135 GeV right-handed neutrinos (each flavor equally represented), each of which decays to a light neutrino and 120 GeV standard model Higgs particle.
Anihilation into ν’s

- The secondary neutrinos produced from the Higgs decay result in a broad, soft spectrum, whereas the neutrinos produced directly from N^c decays produce a narrower peak at lower energies on the order of the mass difference between the N^c and the Higgs.

- Due to the Higgs decays, there is also a gamma-ray component to the signal.

If Higgs mass is small—negligible compared to the right sneutrino (DM) mass:

- The spectrum of the produced light neutrinos is at the energy of the right sneutrino.

- This simple scenario results in a prominent neutrino line feature.
- Signal to background improves with high angular precision, but rates become very low.
- Can improve with higher energy resolution (smaller bin size).

ν final states and IceCube

Sneutrinos annihilate to produce to Right-handed neutrinos

mSUGRA: Focus point

Conclusion

Simultaneous observation of gamma-rays and neutrinos allows for more constrained conclusions about models.

The signal contains both galactic and extragalactic component.

Final state intensity depends on the annihilation cross-section, density profiles of the cores and halos substructures.

Neutrinos may be more suited than the gamma rays for observing a signal from the galactic center.