Cosmology and Colliders

R. Arnowitt, ¹ A. Aurisano, ¹* B. Dutta, ¹ T. Kamon, ¹
V. Khotilovich, ¹* N. Kolev, ² P. Simeon, ¹**
D. Toback, ¹ P. Wagner ¹*

1) Department of Physics, Texas A&M University
2) Department of Physics, Regina University, Canada
* Graduate Student ** Undergraduate Student

ICHEP 2006, MOSCOW, RUSSIA
Cosmology, SUSY, WIMP

Stau neutralino coannihilation in minimal supergravity (mSUGRA) model

Prospects of detection of SUSY in coannihilation region at the ILC

Prospects of detection at the LHC

Conclusion

Can the mSUGRA naturally provide small ΔM?

$\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}$

Griest, Seckel'91
Minimal Supergravity (mSUGRA)

4 parameters + 1 sign

- $m_{1/2}$: Common gaugino mass at M_G
- m_0: Common scalar mass at M_G
- A_0: Trilinear coupling at M_G
- $\tan \beta$: $<H_u>/<H_d>$ at the electroweak scale
- $\text{sign}(\mu)$: Sign of Higgs mixing parameter ($W^{(2)} = \mu H_u H_d$)

Experimental Constraints

i. $M_{\text{Higgs}} > 114$ GeV $M_{\text{chargino}} > 104$ GeV

ii. $2.2 \times 10^{-4} < Br (b \rightarrow s \gamma) < 4.5 \times 10^{-4}$

iii. $0.094 < \Omega_{\tilde{\chi}_1^0} h^2 < 0.129$

iv. $(g-2)_\mu$
Stau Neutralino Coannihilation and GUT Scale

In mSUGRA model the lightest stau seems to be naturally close to the lightest neutralino mass especially for large \(\tan \beta \).

For example, the lightest selectron mass is related to the lightest neutralino mass in terms of GUT scale parameters:

\[
\tilde{m}^2_{\tilde{e}_c} = m^2_0 + 0.15 m^2_{1/2} + (37 \text{ GeV})^2 \\
\tilde{m}^2_{\tilde{\chi}_1^0} = 0.16 m^2_{1/2}
\]

Thus for \(m_0 = 0 \), the mass of \(\tilde{E}_c^2 \) becomes degenerate with the \(\tilde{\chi}_1^0 \) mass at \(m_{1/2} = 370 \text{ GeV} \), i.e. the coannihilation region begins at

\[m_{1/2} = (370-400) \text{ GeV} \]

For larger \(m_{1/2} \) the degeneracy is maintained by increasing \(m_0 \) and we get a corridor in the \(m_0 - m_{1/2} \) plane.

The coannihilation channel occurs in most SUGRA models with non-universal soft breaking,
Can we measure ΔM at colliders?
At the ILC ...

Stau-Pair Production

ΔM Measurement

$\delta \Delta M / \Delta M \sim 10\% \ (500 \ fb^{-1})$

if we implement a very forward calorimeter to reduce two-photon background.

Can we discovery the signals in the coannihilation region at the LHC?

Final State: $\tau^+ \tau^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$

What will be $\delta \Delta M / \Delta M$?
SUSY Signature at the LHC

Squark-Gluino Production

\[\tilde{\chi}_2^0 \rightarrow \tau^+ + \tilde{\tau}_1^- \rightarrow \tau^+ + \tau^- \tilde{\chi}_1^0 \]

Triggering the jets and missing $E_T \rightarrow E_T^{\text{miss}} + \text{jets} + \tau's$
$E_T^{\text{miss}} + 2j + 2\tau$ Analysis (I)

[1] ISAJET + ATLFAST sample of E_T^{miss}, 2 jets, and at least 2 taus with $p_T^{\text{vis}} > 40$, 20 GeV and $\mathcal{E}_{\tau} = 50\%$, fake ($f_j \rightarrow \tau$) = 1%. Optimized cuts:

$E_T^{\text{jet1}} > 100$ GeV; $E_T^{\text{jet2}} > 100$ GeV; $E_T^{\text{miss}} > 180$ GeV; $E_T^{\text{jet1}} + E_T^{\text{jet2}} + E_T^{\text{miss}} > 600$ GeV

[2] Number of SUSY and SM events (10 fb$^{-1}$):

Top : 115 events
W+jets : 44 events
SUSY : 590 events
$E_T^{\text{miss}} + 2j + 2\tau$ Analysis (II)

10 fb$^{-1}$

$p_T^{\text{vis}} > 40, 20$ GeV

$M_{\text{peak}} = 78.7$ GeV

$M_{\text{max}} = 10$ fb$^{-1}$

How to Establish the Discovery

1. $N_{\text{OS-LS}}$ (Number of OS–LS counts)

2. Clear peak (M_{peak}) and end-point (M_{max}) in di-tau mass distribution for OS–LS pairs

3. M_{peak} is used to determine ΔM

$p_T^{\tau} > 20$ GeV is essential!
2τ Analysis: Discovery Luminosity

[Assumption] The gluino mass is measured with \(\delta M/M_{\text{gluino}} = \pm 5\% \) in a separate analysis.

A small \(\Delta M \) can be detected in first few years of LHC.
$E_T^{\text{miss}} + 1j + 3\tau$ Analysis

Much smaller SM background, but a lower acceptance

[1] ISAJET + PGS sample of E_T^{miss}, 1 jet and at least 3 taus with $p_T^{\text{vis}} > 40, 40, 20$ GeV and $\varepsilon_\tau = 50\%$, fake $(f_{j\rightarrow \tau}) = 1\%$. Final cuts:

$E_T^{\text{jet}1} > 100$ GeV, $E_T^{\text{miss}} > 100$ GeV, $E_T^{\text{jet}1} + E_T^{\text{miss}} > 400$ GeV

[2] Select OS low di-tau mass pairs, subtract off LS pairs

Small dependence on the uncertainty of $f_{j\rightarrow \tau}$

Note: $f_{j\rightarrow \tau} = 0\% \rightarrow 1.6$ counts/fb$^{-1}$
3τ Analysis: Combined Results

- Use N_{OS-LS} and $M_{\tau\tau}$ to independently measure ΔM
- Both produce high quality measurements
- As in the 2τ analysis, we assume a gluino mass
- Dominant uncertainty
 - 5% uncertainty on M_{gluino}

- Combined results: $\Delta M = 10 \pm 1.3$ GeV (30 fb$^{-1}$)
Next: combine $N_{\text{OS-LS}}$ and $M_{\ell\ell}$ values to measure ΔM and M_{gluino} simultaneously.

Counts drop with M_{gluino}

Mass rises with M_{gluino}

$\delta \Delta M / \Delta M \sim 15\%$ and $\delta M_{\text{gluino}} / M_{\text{gluino}} \sim 6\%$
Signals in the stau-neutralino coannihilation region are studied using mSUGRA model as a benchmark scenario ($\Delta M \sim 10 \text{ GeV}$)

LHC: Two analyses with visible $p_T^\tau > 20 \text{ GeV}$:

- **2τ analysis**: Discovery with 10 fb^{-1}
 - $\delta \Delta M / \Delta M \sim 18\%$ using M_{peak} with 5\% gluino mass error

- **3τ analysis**: Combine $N_{\text{OS-LS}}$ and M_{peak} measurements
 - $\delta \Delta M / \Delta M \sim 13\%$ with 30 fb^{-1} and 5\% gluino mass error
 - $\delta \Delta M / \Delta M \sim 15\%$ and $\delta M_{\text{gluino}} / M_{\text{gluino}} \sim 6\%$ with no gluino mass assumption
 (It may be hard to measure the gluino mass otherwise due to the low energy taus in the signal.)

- The analyses can be done for the other models that don’t suppress χ^0_2 production.

✓ **Comparison**: $\delta \Delta M / \Delta M \sim 10\%$ (500 fb^{-1}) at the ILC if we implement a very forward calorimeter to reduce two-γ background.
Backups
SUSY is an interesting class of models to provide a massive neutral particle ($m \sim 100$ GeV) and weakly interacting (WIMP).
Reference Points

$m_{1/2} = 360$ GeV

$M_{\text{gluino}} = 830$ GeV

<table>
<thead>
<tr>
<th></th>
<th>m_0</th>
<th>210</th>
<th>212</th>
<th>215</th>
<th>217</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{g}</td>
<td>831</td>
<td>831</td>
<td>831</td>
<td>831</td>
<td>832</td>
<td></td>
</tr>
<tr>
<td>\tilde{u}_L</td>
<td>764</td>
<td>764</td>
<td>765</td>
<td>765</td>
<td>766</td>
<td></td>
</tr>
<tr>
<td>\tilde{u}_R</td>
<td>740</td>
<td>740</td>
<td>741</td>
<td>741</td>
<td>742</td>
<td></td>
</tr>
<tr>
<td>\tilde{t}_2</td>
<td>744</td>
<td>744</td>
<td>744</td>
<td>745</td>
<td>745</td>
<td></td>
</tr>
<tr>
<td>\tilde{t}_1</td>
<td>578</td>
<td>578</td>
<td>579</td>
<td>579</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>$\tilde{\tau}_2$</td>
<td>331</td>
<td>332</td>
<td>333</td>
<td>334</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>\tilde{e}_L</td>
<td>323</td>
<td>324</td>
<td>326</td>
<td>328</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>$\tilde{\chi}_2^0$</td>
<td>266</td>
<td>266</td>
<td>266</td>
<td>266</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>\tilde{e}_R</td>
<td>252</td>
<td>254</td>
<td>256</td>
<td>258</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>$\tilde{\tau}_1$</td>
<td>149.9</td>
<td>151.8</td>
<td>154.8</td>
<td>156.7</td>
<td>159.5</td>
<td></td>
</tr>
<tr>
<td>$\tilde{\chi}_1^0$</td>
<td>144.2</td>
<td>144.2</td>
<td>144.2</td>
<td>144.2</td>
<td>144.2</td>
<td></td>
</tr>
</tbody>
</table>

$\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}$

<table>
<thead>
<tr>
<th></th>
<th>5.7</th>
<th>7.6</th>
<th>10.6</th>
<th>12.5</th>
<th>15.4</th>
</tr>
</thead>
</table>

$M_{\tau\tau}^{\text{max}}$

| | 60.0 | 68.3 | 78.7 | 84.1 | 91.2 |
Reach in $m_{1/2}$?

With 100 fb$^{-1}$, the LHC could probe $m_{1/2}$ up to ~ 700 GeV

$\tan \beta = 40, \mu > 0$
$A_0 = 0$

$m_{1/2} = 360$ GeV

Sliding cut on $E_T^{\text{jet1}} + E_T^{\text{jet2}} + E_T^{\text{miss}}$
2τ Analysis: Accuracy in ΔM

$\Delta M = 10 \pm 1.2^{+1.4}_{-1.2}$ GeV (10 fb$^{-1}$)

\Rightarrow We extract ΔM from M_{peak}.

I. $\delta M_{\text{peak}} = \text{r.m.s} / \sqrt{N_{\text{OS-LS}}}$

II. $\delta M / M_{\text{gluino}} = \pm 5\%$

Negligible $f_{j \rightarrow \tau}$ dependence
3τ Analysis: Accuracy in ΔM & M_{gluino}

$\Delta M = 9 \text{ GeV}$

$M_{\tilde{g}} = 850 \text{ GeV}$

Combined Measurement

$\rightarrow 22\% - 15\%$

(10 - 30 fb$^{-1}$)

$\rightarrow 9\% - 6\%$

(10 - 30 fb$^{-1}$)
Remark: 3 τ events with Jet \rightarrow τ Fakes

What is accepted by OS–LS?

<table>
<thead>
<tr>
<th>Process</th>
<th>“2τ”</th>
<th>“3τ”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi}_2^0 \tilde{\chi}_2^0$</td>
<td>yes, no</td>
<td>yes, yes</td>
</tr>
<tr>
<td>$\tilde{\chi}_2^0 \tilde{\chi}_1^\pm$</td>
<td>yes, no</td>
<td>yes, yes</td>
</tr>
<tr>
<td>$\tilde{\chi}_2^0 \tilde{\chi}_1^0$</td>
<td>yes, no</td>
<td>yes</td>
</tr>
<tr>
<td>$\tilde{\chi}_2^0 \tilde{\chi}_1^0$</td>
<td>yes, no</td>
<td>yes</td>
</tr>
</tbody>
</table>

- $\tilde{\tau}$ pairs will be cancelled in OS–LS, but $\tau\tau$ pairs from χ_2^0 contribute in the $\tau\tilde{\tau}$ case to the $N_{\text{OS–LS}}$ counting. Doesn’t affect ΔM measurement!

- The uncertainty on the jet $\rightarrow \tau$ fake rate is required to be known, but ΔM measurement is not significantly effected at a level of 20% systematic uncertainty.
$E_T^{\text{miss}} + 2j + 2\tau$ Analysis (I)

[1] ISAJET + ATLFAST sample of E_T^{miss}, 2 jets, and at least 2 τ's with $p_T^{\text{vis}} > 40, 20$ GeV and $\mathcal{E}_{\tau} = 50\%$, fake ($f_j \rightarrow \tau$) = 1%. Optimized cuts:

- $E_T^{\text{jet}1} > 100$ GeV;
- $E_T^{\text{jet}2} > 100$ GeV;
- $E_T^{\text{miss}} > 180$ GeV;
- $E_T^{\text{jet}1} + E_T^{\text{jet}2} + E_T^{\text{miss}} > 600$ GeV

[2] Number of SUSY and SM events (10 fb$^{-1}$):

- Top : 115 events
- W+jets : 44 events
- SUSY : 590 events

CDF
PRL 95 (2005) 131801

$M_{\text{gluino}} = 830$ GeV
($\Delta M = 10.6$ GeV)