Short Answers: 1. The container acts like a stopped pipe whose length decreases as the water level rises. From \(f_n = \frac{nv}{4L} \), as \(L \) decreases the frequency increases.
 2. For a material undergoing a temperature change \(\Delta T \), the volume expands as \(\Delta V = \beta V_0 \Delta T \). The metal lid has a higher \(\beta \) than the glass jar, so it loosens the seal. If both were metal, the \(\beta \)s would be equal and so would the volume change; no it would not work.
 3. (b), (c) and (e)
 4. (b)
 5. (d)

Problem 1: (a) \(T = 44.0 \) N
 (b) \(V = 4.3 \times 10^{-3} \) m\(^3\)

Problem 2: (a) \(t = 1.50 \) s
 (b) \(h = 5.05 \) m

Problem 3: \(|\vec{v}| = 1.35 \) m/s, \(\theta = 71.7^\circ \) above the \(\hat{x} \)-axis

Problem 4: (a) \(a_{\tan} = 68.7 \) m/s\(^2\)
 (b) \(F = 1.06 \) N

Problem 5: (a) \(T = 5 \) N
 (b) \(F_{\text{nail}} = 113 \) N upwards

Problem 6: \(T = 27.0^\circ\text{C} \)

Problem 7: (a) \(W = -144 \) kJ
 (b) \(Q = -289 \) kJ
 (c) out of the gas

Problem 8: (a) \(v = 7.67 \) m/s
 (b) \(v = 6.48 \) m/s
 (c) with slippage \(K_{\text{tot}} = 58.8 \) J, without slippage \(K_{\text{tot}} = 58.8 \) J.

Bonus: Stopping distance on snowy day = 251.4 m (I hit it)
 (a) \(v_f' = 13.9 \) m/s
 (b) \(\mu'_{sk} \geq 0.243 \)