Exam I*

Multiple Choice: 1. (a), (b) and (e)
2. (a)-(ii), (b)-(iii) and (c)-(i)

Short answers: 1. \(\Delta y_{\text{Jupiter}} = 1.3h \)
2. No. The weight of the boxer decreases since \(W = mg \) and \(g \) is \(1/6 \)th that of Earth. But, his mass and inertia stays the same; changing his direction of motion requires just as large a force and so is just as difficult (moreso, in fact, since you’re \(\hat{n} \) is smaller and hence friction to grip the ground with is smaller).

Problem 1: (a) \(\ddot{a} = 3.5 \text{ m/s}^2 \hat{y} \) (b) \(y = 37.0 \text{ km} \) (c) \(v = 0 \) and \(a = -9.8 \text{ m/s}^2 \)

 Problem 2: (a) \(v_0 = 18.7 \text{ m/s} \) (b) \(t = 2.4 \text{ s} \)

Problem 3: (a) \(F \)

 Problem 4: (a) \(\theta = +61^\circ \) (b) \(\vec{v}_{P/I} = 9.58 \text{ m/s} \) in direction 48.1° above \(\hat{x} \)