Characterization of Wet Aerosol Transportation for Online Chemistry Experiments

Gabriel I. Lopez Morales* ~
Advisors: Dr. Evgeny Tereshatov*, Dr. Charles M. Folden III*

* Cyclotron Institute, Texas A&M University
~ Interamerican University of Puerto Rico, Bayamon Campus
Introduction:

Beam From Cyclotron

Target

MARS Physical Pre-Separator

RTT Window

Recoil Transfer Chamber (RTC)

Variable Angle Degrader

Chemistry Experiment
The efficiency of aerosol transportation depends on a number of factors, including:

- Chemical properties of the radionuclide.
- Gas flow rate inside the chamber.
- Size of the aerosol particles.
- Half-life of the radionuclide.

Using a ^{228}Th source will make a simple, affordable, and easy-to-manipulate system, and eliminates the need to use accelerator time for these experiments.
Project Brief Summary:

• Why use wet aerosol instead of dry?

• Why a 228Th radioactive source?
Experimental Setup:

Inlet gas pressure: ~15 PSI
Flow rate: 4.5-4.7LPM

Legend:
- Empty line (air flow)
- Helium Gas
- KCl Solution
- KCl Aerosol + He
- KCl Aerosol + He + Radionuclide
- Clean Air

“Simulated AC Chamber” Setup For Characterization Experiments
Results and Data Analysis:

Mass collected by sorbent in a 2 min interval:
Results and Data Analysis:

Drierites on HPGe:

Energy, keV

Count per second

2 min collection

10 min collection

30 min collection

Background

220Rn 224Ra 216Po 212Pb 212Bi 212Po 208Tl

220Rn 224Ra 216Po 212Pb 212Bi 212Po 208Tl

220Rn 224Ra 216Po 212Pb 212Bi 212Po 208Tl

220Rn 224Ra 216Po 212Pb 212Bi 212Po 208Tl
Results and Data Analysis:

Charcoal on NaI Detector:

2 min collection

Energy, keV

Count per second

Background

Energy, keV
Conclusions:

✓ A system for testing “wet” KCl aerosols without the RTC has been developed.

✓ KCl generator has been checked with a “simulated AC chamber”.

✓ Four different sorbent materials have been studied for aerosol particle collection.

✓ Intensity of the 228Th source was too low.

✓ Additional work is needed to optimize the use of wet aerosols before they can be used in online experiments.
Future Work:

• Use a radioactive source with greater activity and more suitable decay properties for future characterizations.

• Incorporate an aerosol dryer to allow the aerosols to be used with the actual RTC.

• Add a generator reservoir bottle in order to maintain constant concentration of the KCl solution.

• Add an aerosol particle neutralizer to prevent aerosols from being influenced by stray electric fields in the RTC.
Special Thanks and Acknowledgements:

Thanks to the National Science Foundation and the US Department of Energy for funding and making this research program possible.

My most sincere thanks to my advisors, Dr. Evgeny Tereshatov and Dr. Charles M. Folden III and Heavy Elements Research Group for a truly enjoyable research experience and for great advice.

Most Importantly: THANKS TO DR. FOLDEN AND DR. YENELLO FOR THE OPPORTUNITY!

Research Program Founded By The National Science Foundation
Grant number: PHY-1263281.