NOVEL TECHNIQUES FOR THE POSITION CALIBRATION OF FAUST

David Balaban
2014 Cyclotron REU Program
Dr. Sherry Yennello’s Group
The Forward Array Using Silicon Technology (FAUST) consists of 68 detectors. Detectors identify and measure the energy of charged particles. Recently upgraded to position-sensitive detectors. Structural tolerances may result in inaccurate relative positioning. Position must be accurately known for upcoming experiments.
Current induced by charged particle
Voltage determines position with:

\[X\text{-Position} = \frac{\text{Back2}-\text{Back1}}{\text{Back1}+\text{Back2}} \]
\[Y\text{-Position} = \frac{\text{Front2}-\text{Front1}}{\text{Front1}+\text{Front2}} \]

THE FAUST ARRAY MASK

- Mask blocks particles and creates striped pattern on detectors
- Stripes on detectors will be misplaced by detector motion
- Goal is to find how far detectors are from expected positions

2 phases to accomplish:
1.) Identify stripes on detector
2.) Find set of linear transformations applied to detector which will reposition the stripes to the expected values
PHASE 1 PROCESS

0. Collect Data
1. Noise Removal
2. Rotation
3. Projection onto y-axis
4. **K-means algorithm**
5. Data Selection and Linear Fit
6. Display Result
1. Noise Removal

- Collected from 228Th Source
- Cut electrical noise at low energy
- Stretch out data empirically
 - Trying to understand characteristics of compression
2. Rotation

- Rotate data by expected angle of slope
- Makes projecting and fitting easier.
3. Project Data onto y-axis

After projecting onto y-axis, large peaks correspond to stripes.
Description of K-means:

1. Initialize k random points
2. Calculate average position of data associated with each point
3. Reset point to average position
4. Repeat until convergence

Picture from:
4. Run K-means Algorithm

- Use K-means to identify location of stripes
- Must select best K-value
5. Data Selection

- Approximate location of stripe
- Linear fit to data
6. Final Result

- Rotate lines back by 45 degrees
- Colors show which points were used in fit
- Left shows plot from step 2
- Right shows finished product.
PHASE 2

- Data collected with 228Th Source and 4He@15MeV/A+ $^{\text{nat}}$Au
- Want to get blue and red data points closer to orange
Geometry Simulation

- Geometry Simulation
- “Perfect World” expectation
- Alpha particle simulation perfect elastic scattering

^{228}Th Source

- Can see stripes on ring C, not ring A
- 2-3 stripes on detectors
Geometry Simulation

• Geometry Simulation
• “Perfect World” expectation
• Alpha particle simulation perfect elastic scattering

\[^4\text{He} \oplus 15\text{MeV/A}^+ \text{nat Au}\]

• Low stats on ring C
• Similar stripes to source
• Agrees with source for ring C
Description of Hill Climbing:

- Define set of free parameters P
- Define method $\text{eval}(P)$ to evaluate parameters to a single value

HC tries to find the global maximum of $\text{eval}(P)$ by changing P.

The picture to the left shows a successful Hill Climb with one free parameter. Local maxima causes difficulty for successful HC.

Preliminary testing of Hill Climbing algorithm.

Setup:
- Two initially parallel lines are rotated randomly
- Hill Climbing is told to make them parallel again through rotations
- 6 free parameters (3 per line)
Setup:
• Ring of detectors rotated by .5 degrees about beam-axis
• Each detector is rotated randomly within a given range
• Hill Climbing is told to rotate ring such that the set of stripes are as close to expected as possible
Setup:

- 1 free parameter
- Cutting on eval(P) allows better accuracy
- As the range increases inaccuracy grows
SUMMARY

- FAUST Detectors measure position but need to be calibrated
- Mask allows for 2-phase process for calibration
- Phase one identifies stripes with linear fits
- Phase two needs to be tested more before implementation
ACKNOWLEDGEMENTS

This work was supported by:
- the Robert A. Welch Foundation under Grant No. A-1266
- U. S. Department of Energy under Grant No. DE-FG03-93ER-40773
- National Science Foundation under Grant No. PHY-1263281

Works Cited: