Developing a Modern Energy Density Functional for Oxygen-28

Christina Loniewski
University of Rochester

Research at Cyclotron Institute, Texas A&M University
Dr. Shalom Shlomo’s Group
Energy Density Functional

What is its importance?
• Nuclear matter
• Exotic nuclei
• Astrophysical phenomena

Problem?
• Need to use existing data to fit EDF for better predictions
Why Oxygen-28?

- The nucleus ^{28}O has magic numbers of nucleons.
- ^{28}O is unbound (not observed).
- ^{28}O has high proton-neutron asymmetry.
- If this phenomena can be understood, it will provide more reliable predictions for unknown nuclear masses outside the valley of nuclear stability.
Mean-Field Theory

• Nucleus is a many-body system with complicated strong two-body interaction
• Obtaining a solution to the many-body Schrodinger equation is very difficult

\[H = \sum_i -\frac{\hbar^2}{2m_i} \nabla_i^2 + \sum_{i<j} V_{ij} \]

\[H\Psi_n (1,...,A) = E_n \Psi_n (1,...,A) \]
Mean-Field Theory

In the Mean-Field Approximation, a particle interacts with an average potential produced by all other particles in the system.

Here, we write the Hamiltonian using a central potential U and residual interaction H_{res}

$$H = \sum_i \left[\frac{\vec{p}_i^2}{2m_i} + U(\vec{r}_i) \right] + H_{\text{res}}$$

$$H_{\text{res}} = \sum_{ij} V_{ij} - \sum_i U(\vec{r}_i)$$
Hartree-Fock Method

The total wave function is written as an antisymmetric product of single particle wave functions. It can be represented using the antisymmetry operator \hat{A} or a Slater Determinant.

$$\Phi = \hat{A} \phi_i(1) \ldots \phi_A(A)$$

$$\Phi = \frac{1}{\sqrt{A!}} \begin{vmatrix}
\phi_1(\vec{r}_1, \sigma_1, \tau_1) & \phi_2(\vec{r}_1, \sigma_1, \tau_1) & \ldots & \phi_A(\vec{r}_1, \sigma_1, \tau_1) \\
\phi_1(\vec{r}_2, \sigma_2, \tau_2) & \phi_2(\vec{r}_2, \sigma_2, \tau_2) & \ldots & \phi_A(\vec{r}_2, \sigma_2, \tau_2) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_1(\vec{r}_A, \sigma_A, \tau_A) & \phi_2(\vec{r}_A, \sigma_A, \tau_A) & \ldots & \phi_A(\vec{r}_A, \sigma_A, \tau_A)
\end{vmatrix}$$
In the spherical symmetry approximation of the nucleus, the single particle wave functions can be separated into their radial, spin, and isospin components.

\[\phi_i(\vec{r}, \sigma, \tau) = \frac{R_{\alpha_i}(r)}{r} Y_{jlm}(r, \sigma) \chi_{m_z}(\tau) \]

Using the total wave function and the Hamiltonian operator, one can calculate the expectation value of the binding energy

\[E = \left\langle \Phi \left| \hat{H}_{\text{total}} \right| \Phi \right\rangle = \int H(\vec{r}) d\vec{r} \]

Minimizing \(E \), we obtain the well-known Hartree-Fock equations.
Skyrme Interaction

Two potentials: Coulomb and strong nuclear.

\[V_{ij}^{\text{Coul}} = -\frac{e^2}{4} \sum_{i,j=1}^{A} \frac{\tau_{ij}^2 + \tau_{ij}}{|\vec{r}_i - \vec{r}_j|} \]

The standard Skyrme-type interaction is given by the following for the strong nuclear:

\[V_{ij}^{\text{NN}} = t_0 (1 + x_0 P_{ij}^\sigma) \delta(\vec{r}_i - \vec{r}_j) + \frac{1}{2} t_1 (1 + x_1 P_{ij}^\sigma) \left[\vec{k}_{ij}^2 \delta(\vec{r}_i - \vec{r}_j) + \delta(\vec{r}_i - \vec{r}_j) \vec{k}_{ij}^2 \right] + \]

\[t_2 (1 + x_2 P_{ij}^\sigma) \vec{k}_{ij} \delta(\vec{r}_i - \vec{r}_j) \vec{k}_{ij} + \frac{1}{6} t_3 (1 + x_3 P_{ij}^\sigma) \rho^\alpha \left(\frac{(\vec{r}_i - \vec{r}_j)}{2} \right) \delta(\vec{r}_i - \vec{r}_j) + \]

\[i W_0 \vec{k}_{ij} \delta(\vec{r}_i - \vec{r}_j) (\vec{\sigma}_i + \vec{\sigma}_j) \vec{k}_{ij} \]

\[t_i, x_i, \alpha, W_0 \text{ are 10 Skyrme parameters} \]
The resulting Hartree-Fock equations are:

\[\frac{\hbar^2}{2m^*_r(r)} \left[-R^\alpha_r(r) + \frac{l_{\alpha}(l_{\alpha} + 1)}{r^2} R^\alpha_r(r) \right] - \frac{d}{dr} \left(\frac{\hbar^2}{2m^*_r(r)} \right) R^\alpha_r(r) + \]

\[\left[U^\tau_r(r) + \frac{1}{r} \frac{d}{dr} \left(\frac{\hbar^2}{2m^*_r(r)} \right) + \frac{j_{\alpha}(j_{\alpha} + 1) - l_{\alpha}(l_{\alpha} + 1) - \frac{3}{4}}{r} W^\tau_r(r) \right] R^\alpha_r(r) \]

\[= \varepsilon^\alpha_r R^\alpha_r(r) \]

where \(m^*_r(r) \), \(U^\tau_r(r) \), and \(W^\tau_r(r) \) are the effective mass, the potential, and the spin orbit potential. These are given in terms of Skryme parameters and nuclear densities.
Continue with HF-method

1) Initial guess of the single-particle wave functions should start close to the solution.

2) Solve HF equation and iterate to get new set of single-particle wave functions
The Skyrme Interaction KDE0v1 [1]

There exist over 300 Skyrme parameterizations in literature. Recently, 240 Skyrme interaction parameter sets were analyzed for their ability to pass the following constraints from experimental data [2]:

1. Properties of nuclear matter close to saturation density
2. Properties of finite nuclei
3. Observational data on neutron stars

KDE0v1 is the only interaction to pass the test

Parameters of Skyrme Interactions and Their Nuclear Matter Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>KDE0 [1]</th>
<th>KDE0v1 [1]</th>
<th>KDE0v1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0 (MeV fm3)</td>
<td>-2526.5110</td>
<td>-2553.0843</td>
<td>-2537.7658</td>
</tr>
<tr>
<td>t_1 (MeV fm5)</td>
<td>430.9418</td>
<td>411.6963</td>
<td>411.6963</td>
</tr>
<tr>
<td>t_2 (MeV fm5)</td>
<td>-398.3775</td>
<td>-419.8712</td>
<td>-419.8712</td>
</tr>
<tr>
<td>t_3 (MeV fm$^{3(1+\alpha)}$)</td>
<td>14235.5193</td>
<td>14603.6069</td>
<td>14515.9853</td>
</tr>
<tr>
<td>x_0</td>
<td>0.7583</td>
<td>0.6483</td>
<td>0.6483</td>
</tr>
<tr>
<td>X_1</td>
<td>-0.3087</td>
<td>-0.3472</td>
<td>-0.3472</td>
</tr>
<tr>
<td>X_2</td>
<td>-0.9495</td>
<td>-0.9268</td>
<td>-0.9268</td>
</tr>
<tr>
<td>X_3</td>
<td>1.1445</td>
<td>0.9475</td>
<td>0.9475</td>
</tr>
<tr>
<td>W_0 (MeV fm5)</td>
<td>128.9649</td>
<td>124.4100</td>
<td>158.0007</td>
</tr>
<tr>
<td>α</td>
<td>0.1676</td>
<td>0.1673</td>
<td>0.1673</td>
</tr>
</tbody>
</table>

Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>KDE0 [1]</th>
<th>KDE0v1 [1]</th>
<th>KDE0v1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/A (MeV)</td>
<td>16.11</td>
<td>16.23</td>
<td>15.95</td>
</tr>
<tr>
<td>K (MeV)</td>
<td>228.82</td>
<td>227.54</td>
<td>234.48</td>
</tr>
<tr>
<td>ρ_0 (fm$^{-3}$)</td>
<td>0.161</td>
<td>0.165</td>
<td>0.163</td>
</tr>
<tr>
<td>J (MeV)</td>
<td>33.00</td>
<td>34.58</td>
<td>34.38</td>
</tr>
<tr>
<td>L (MeV)</td>
<td>45.22</td>
<td>54.59</td>
<td>54.69</td>
</tr>
</tbody>
</table>
Binding Energy of Neutron 1d3/2 Orbital in 28O
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Experiment</th>
<th>KDE0v1</th>
<th>%DifExp</th>
<th>KDE0v1*</th>
<th>%DifExp</th>
<th>%DifKDE0v1</th>
</tr>
</thead>
<tbody>
<tr>
<td>28O</td>
<td>unknown</td>
<td>168.823</td>
<td></td>
<td>165.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24O</td>
<td>168.38</td>
<td>167.65</td>
<td>-0.433</td>
<td>169.34</td>
<td>0.570</td>
<td>1.008</td>
</tr>
<tr>
<td>16O</td>
<td>127.62</td>
<td>126.00</td>
<td>-1.269</td>
<td>123.52</td>
<td>-3.213</td>
<td>-1.969</td>
</tr>
<tr>
<td>208Pb</td>
<td>1636.43</td>
<td>1635.63</td>
<td>-0.049</td>
<td>1618.29</td>
<td>-1.109</td>
<td>-1.060</td>
</tr>
<tr>
<td>90Zr</td>
<td>783.89</td>
<td>784.25</td>
<td>0.046</td>
<td>777.19</td>
<td>-0.855</td>
<td>-0.900</td>
</tr>
<tr>
<td>40Ca</td>
<td>342.05</td>
<td>341.42</td>
<td>-0.184</td>
<td>333.99</td>
<td>-2.358</td>
<td>-2.178</td>
</tr>
<tr>
<td>48Ca</td>
<td>415.99</td>
<td>414.63</td>
<td>-0.327</td>
<td>414.35</td>
<td>-0.393</td>
<td>-0.066</td>
</tr>
</tbody>
</table>
Conclusions

We have determined a new Skyrme interaction KDE0v1*

• KDE0v1* predicts a lower binding energy for O-28 than that of O-24 which means an unbound O-28, in agreement with experiment.

• KDE0v1* predicts an unbound orbital 1d 3/2 for O-28.

• KDE0v1* yields results within 3.3% of experimental values for the above nuclei. It is not as close as KDE0v1, and lowers all these nuclei’s binding energies with the exception of O-24.

A better fit, by varying all the Skyrme parameters, should be carried out.
Grant PHY-1263281
Special thanks to Shalom Shlomo, Giacomo Bonasera, and Mason Anders for their work and aid in this project’s development.