Final Exam Study Guide
Final is Comprehensive!

• Covers content of the entire course
• Please be sure to look at the Study Guides for the first three in-class exams
 – All of that material will be on the final exam
• Study the questions on previous exams carefully!
• This guide covers only the additional material that will be on the final exam from the last two weeks of class
The Milky Way:

• The **Milky Way** is our Galaxy
 – Diffuse band of light crossing the sky
 – Galileo: Milky Way consists of many faint stars

• The Nature of the Milky Way
 – Philosophical Speculations: Wright & Kant
 – Star Counts: Herschels & Kapteyn
 – Globular Cluster Distribution: Shapley
The Milky Way and Other Galaxies:

• Disk & Spheroid Structure of the Galaxy

• Pop I Stars:
 – Young, metal-rich, disk stars
 – Ordered, nearly circular orbits in the disk

• Pop II Stars:
 – Old, metal-poor, spheroid stars
 – Disordered, elliptical orbits in all directions

• Gives clues to the formation of the Galaxy.
Other Galaxies:

- Three basic types of Galaxies:
 - Spirals
 - Disk and spheroid component
 - Rotation of disk allows measurement of galaxy mass
 - Ellipticals
 - Irregulars
- Differ in terms of
 - Relative Gas content
 - Star Formation History
 - Internal Motions
- Galaxies tend to group into Clusters
 - Groups, clusters, and superclusters
 - Galaxies can collide and merge
- Some galaxies have “active” nuclei
 - Powered by large Black holes in the center
Special Relativity:

• **Postulates of Special Relativity:**
 – The laws of physics are the *same* for all uniformly moving observers.
 – The speed of light is the *same* for all observers.

• **Consequences:**
 – Different observers measure *different* times, lengths, and masses.
 – Only *spacetime* is observer independent.
General Relativity:

• **General Relativity:**
 – Modern Theory of Gravitation
 – Matter tells spacetime how to curve.
 – Curved spacetime tells matter how to move.

• **Tests of General Relativity:**
 – Perihelion Precession of Mercury
 – Bending of Starlight near the Sun
 – The Binary Pulsar (Gravitational Waves)
Expansion of the Universe:

- **Hubble’s Law:**
 - Galaxies are receding from us.
 - Recession velocity gets larger with distance.

- **Hubble Constant:**
 - Rate of expansion of the Universe.

- **Cosmological Redshift:**
 - Redshift distances
 - Redshift maps of the Universe.
Cosmology:

• Cosmological Principle:
 – The Universe is *Homogeneous* and *Isotropic* on *Large Scales*.
 – No special places or directions.

• General Relativity predicts an expanding universe.

• Cosmological Constant
 – Non-zero
 – Dark Energy
Big Bang:

• **Big Bang Model of the Universe**
 – Starts in a hot, dense state
 – Universe expands and cools
• **Expansion and Redshift**
• **Critical Density**
 – Geometry of the Universe
• **Hubble Time = Maximum age of the Universe**
Evidence for the Big Bang:

• Fundamental Tests of the Big Bang
• Primordial Nucleosynthesis
 – Primordial Deuterium & Helium
 – Primordial light elements (Li, B, Be)
• Cosmic Background Radiation
 – Relic blackbody radiation from Big Bang
 – Temperature: $T = 2.726$ K
End of Universe:

- The Fate of the Universe depends on the density of matter and dark energy physics

- **Closed Universe:**
 - Enough matter to stop the expansion
 - Collapses in a “Big Crunch”

- **Open Universe:**
 - Expands forever
 - Ends in a cold, disordered state
 - Dark Energy seems to make this outcome more likely