“The First Three Minutes”
The Big Bang’s Hot Past

• **Today:**
 – Universe is low-density and very cold (2.7 K)
 – Steadily expanding

• **~15 Gyr Ago:**
 – Universe was smaller, denser, & hotter
 – Expanding at a somewhat faster rate

• How far back can we go?
Loosing & Binding

• **Binding Energy:**
 – Energy needed to unbind (break up) matter.

• **Binding Temperature:**
 – *Temperature* equivalent to the binding energy.
 – Matter at this temperature “melts” (unbinds)

• Example:
 – In massive stars, nuclei melt at T~10 Billion K.
Typical Sizes & Binding Energies

<table>
<thead>
<tr>
<th></th>
<th>Size</th>
<th>Binding Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atoms</td>
<td>10^{-10} m</td>
<td>10^3 K</td>
</tr>
<tr>
<td>Nuclei</td>
<td>10^{-14} m</td>
<td>10^{10} K</td>
</tr>
<tr>
<td>p & n</td>
<td>10^{-15} m</td>
<td>10^{11} K</td>
</tr>
<tr>
<td>Quarks</td>
<td>10^{-18} m</td>
<td>10^{13} K</td>
</tr>
</tbody>
</table>
Fundamental Forces of Nature

- **Gravitation:**
 - Long-Range

- **Electromagnetic Force:**
 - Long-Range, $10^{39} \times$ stronger than gravity

- **Weak Force:**
 - Range $<10^{-17}$ meters, $10^{28} \times$ gravity

- **Strong Force:**
 - Range $<10^{-15}$ meters, $10^{41} \times$ gravity
Unification of the Forces

• **Electroweak Force:**
 – EM & Weak forces unify at high energies (10^{15}K)
 – Verified in particle accelerator experiments.

• **Grand Unified Theory (GUTs):**
 – Strong & Electroweak Forces unified.
 – Predicted, but no experimental basis (yet?)
“Dreams of a Final Theory”

• What about Gravity?
 – Gravity should unify with the GUTs force at very high energies.
 – Much higher than in any possible accelerator.
 – However, these energies could occur in the Early Universe.

• Problem:
 – We have no quantum theory of Gravity!
The Cosmic Timeline

• Physics gives us a framework within which to describe the Big Bang from the earliest phases to the present.
 – Particle accelerators probe matter at states similar to some of these early phases.
 • Large Hadron Collider will soon begin experiments
 – Astronomers look for evidence in the present Universe (e.g., Cosmic Background, primordial deuterium & helium, dark energy)
LHC
LHC instrument
Planck Epoch

• Before $t=10^{-43}$ sec:
 – All 4 forces unified into a single Superforce
 – 1 force rules all of physics

• Can’t say much else, as we as yet don’t have a quantum theory of gravity to guide us.
Grand Unification Epoch

• At $t=10^{-43}$ sec, $T=10^{32}$ K (???):
 – Gravity separates from the Superforce
 – Strong & Electroweak Forces still unified.

• 2 forces rule physics:
 – Gravity & GUTs

• Universe is a soup of quarks, antiquarks & photons.
Inflationary Epoch

• $t=10^{-35}$ sec (?), $T=10^{27}$ K (?):
 – Strong force separates from GUTs force
 – EM & Weak forces still unified

• 3 forces rule physics:
 – Gravity, Strong, and Electroweak forces

• Rapid separation triggers a rapid “inflation” of the Universe
The Inflationary Universe

• Universe grows by a factor of 10^{50} between 10^{-35} and 10^{-33} seconds!

• Expansion rate greatly slows after this brief burst of inflation.

• Helps to explain why the universe is so very smooth on large scales.
Four Forces at Last!

• $t=10^{-12}$ sec, $T=10^{15}$ K:
 – Electroweak separates into EM & Weak forces
 – All forces are now separate

• 4 forces rule physics:
 – Gravity, Strong, Weak & Electromagnetic

• Conditions becoming right for free matter to begin to exist separate from photons.
Quark Freeze-out

- At $t=10^{-6}$ sec, $T=10^{13}$ K:
 - Free quarks combine into hadrons (primarily protons & neutrons)
 - Particle-antiparticle pairs & photons in equilibrium:

\[
\begin{align*}
\text{p} + \overline{\text{p}} & \leftrightarrow \gamma + \gamma \\
\text{n} + \overline{\text{n}} & \leftrightarrow \gamma + \gamma
\end{align*}
\]
Nucleon Freeze-out

• At $t=0.01$ sec, $T=10^{11}$ K
 – protons & neutrons decouple from photons and exist as free particles.
 – electrons & positrons in equilibrium with photons
 – neutrinos & nucleons in equilibrium

• Free neutrons are stable during this epoch.
Neutrino Decoupling

• At $t=1$ sec, $T=10^{10}$ K
 – neutrinos decouple from matter
 – stream out into space freely
 – cosmic neutrino background (not yet observed)

• Free neutrons are no longer stable:
 – Decay into protons, electrons & neutrinos
 – Left with about 1 neutron for every 7 protons
Epoch of Nucleosynthesis

• $t \sim 3$ min, $T = 10^9$ K:

• Fusion of protons & remaining free neutrons:
 – Formation of 2H (Deuterium) & 4He
 – End up with $\sim 75\%$ H, 25\% He
 – Traces of D, Li, Be, B

• We cannot observe this directly, but we can look for the products of these events.
Epoch of Recombination

• $t=300,000$ yr $T=3000$ K:

• Electrons & nuclei combine into neutral atoms
 – Universe becomes transparent
 – Photons stream out into space
 – Origin of the Cosmic Background Radiation

• Earliest we can see back *directly* using light.
The Epoch of Galaxies

• **Galaxy Formation**: \(t = 10^9 \text{ yrs}, T \sim 30 \text{ K} \)
 - Quasars
 - First generation of stars.
 - First metals from first supernovae.

• **Present**: \(t = 10^{10} \text{ yrs}, T = 2.726 \text{ K} \)
 - Galaxies, stars, planets, us...
 - Metals from supernovae of massive stars.
Cosmic Timeline
What about the Beginning?

- Our physics can not yet probe earlier than the end of the Planck Epoch ($t=10^{-43}$ sec).
- Some would say we have problems back before the Electroweak Epoch ($t=10^{-12}$ sec).
- This will be the astrophysics of the 21st Century (or maybe the 22nd...
Summary:

• Physics of the Early Universe
 – Informed by experimental & theoretical physics

• The Cosmic Timeline:
 – Observations go back to \(t \approx 3 \) minutes
 – Reasonably firm physics back to \(t \approx 10^{-6} \) sec
 – Speculative back before \(t \approx 10^{-12} \) sec
 – Present theories stop at \(t \approx 10^{-43} \) sec