Extreme Stars: White Dwarfs and Neutron Stars
The Stellar Graveyard

• Q: What happens to the cores of dead stars?
• A: They continue to collapse until either:
 – A new pressure law takes hold to halt further collapse & they settle into equilibrium.
 – If too massive they collapse to zero radius and become a Black Hole.
Degenerate Gas Law

• At high densities, a new gas law takes over:
 – Pack many electrons into a tiny volume
 – These electrons fill all low-energy states
 – Only high-energy = high-pressure states left

• Result is a “Degenerate Gas”:
 – Pressure is independent of Temperature.
 – Compression does not lead to heating.
White Dwarfs

- Remnant cores of stars with $M_* < 8 \, M_{\odot}$.
- Held up by **Electron Degeneracy Pressure**.
- **Properties:**
 - Mass $< 1.4 \, M_{\odot}$
 - Radius $\sim R_{\text{earth}} (<0.02 \, R_{\odot})$
 - Density $\sim 10^{5-6} \, \text{g/cc}$
 - No nuclear fusion or gravitational contraction
Sirius B
White Dwarf

Sirius B
Chandrasekhar Mass

- Mass-Radius Relation for White Dwarfs:
 - Larger Mass = Smaller Radius
- Maximum Mass for White Dwarf:
 - $M_{ch} = 1.4 \, M_{\text{sun}}$
 - Calculated by Subrahmanyan Chandrasekhar in the 1930s.
 - Above this mass, electron degeneracy pressure fails & the star collapses.
Evolution of White Dwarfs

• White dwarfs only shine by leftover heat.
 – No sources of new energy (no fusion, nothing)
 – Cools off and fades away slowly.

• Ultimate State: A “Black Dwarf”:
 – Old, cold white dwarf
 – Takes ~ 10 Tyr to cool off
 – Galaxy is not old enough to see Black Dwarfs.
Neutron Stars

• Remnant cores of massive stars:
 – $8 < M_* < 18 \, M_{\text{sun}}$ (??)
 – Leftover core of a core-bounce supernova

• Held up by Neutron Degeneracy Pressure:
 – Mass $\sim 1.2 - 2 \, M_{\text{sun}}$ (???)
 – Radius ~ 10 km (small city)
 – Density $\sim 10^{14}$ g/cc
Structure of a Neutron Star

• At densities > 2×10^{14} g/cc:
 – nuclei melt into a sea of subatomic particles.
 – protons & electrons combine into neutrons.

• Surface is cooler:
 – Solid, crystalline crust.

• Inside is exotic matter:
 – superfluid neutrons, superconducting protons...
Inside a Neutron Star

- Superconducting Protons
- Neutron Superfluid
- Crystalline Iron Crust
Surface of a Neutron Star

• What is it like on a neutron star’s surface?
 – Surface gravity: \(\sim 10^{11} \) g’s
 – Escape velocity: \(\sim 0.5 \) c
 – Temperature: \(\sim 1 \) Million K
 – Magnetic Field Strength: \(\sim 10^{12} \) Gauss
 – (Earth is \(\sim 0.5 \) Gauss)
 – Rotation Rate: 6000 rpm (100 rotations/second)
• You would be squashed flat and vaporized.
First predicted by theory

• **1934:**
 Baade & Zwicky propose that supernovae are stars transforming into neutron stars.
 Most observers thought this was crazy.

• **1938:**
 Oppenheimer & Serber (US) and Landau (USSR) calculate the properties of neutron stars.
 Most theorists were dubious, too.
Accidental Discovery

• **1967:**
 Jocelyn Bell (Cambridge grad student) & Anthony Hewish (her advisor) discover pulsating radio sources while looking for something else.

• “**Pulsars**” = Pulsating Radio Sources
 Emitted 0.001 sec-long pulses every second.
Pulsars

• Rapidly spinning, magnetized neutron stars.

• **Lighthouse Model:**
 – Spinning magnetic field generates a strong electric field.
 – Electric field rips electrons off the surface & accelerates them along the magnetic poles.

• **Result:** twin beams of radiation
Pulsar Evolution

• Pulsars spin slower as they age.
 – lose rotational energy

• Young neutron stars:
 – fast spinning pulsars.
 – found in supernova remnants (e.g., Crab pulsar)

• Old neutron stars:
 – cold and hard to find.
Isolated Neutron Star RX J185635-3754

PRC97-32 • ST ScI OPO • September 25, 1997
F. Walter (State University of New York at Stony Brook) and NASA
Over the top?

- What if the remnant core is very massive?
 - $M_{\text{core}} > 2-3 \, M_{\odot}$
- (original star had $M > 18 \, M_{\odot}$)
 - Neutron degeneracy pressure fails.
 - Nothing can stop gravitational collapse.
 - Collapses to zero radius and infinite density.
- Becomes a Black Hole.
Summary:

• **White Dwarf:**
 – Remnant of a star <8 M_{sun}
 – Held up by Electron Degeneracy Pressure
 – Maximum Mass ~ 1.4 M_{sun}

• **Neutron Star:**
 – Remnant of a star < 18 M_{sun}
 – Held up by Neutron Degeneracy Pressure
 – Pulsar = rapidly spinning neutron star
Questions:

• Do we see white dwarfs?
• Do we see neutron stars?
• Do we see black holes?
• What happens if you add mass to a White Dwarf?