Evolution of High Mass Stars

Astronomy 101
High Mass Stars

• **O & B Stars** \((M > 4 \, M_{\text{sun}})\):
 – Burn Hot
 – Live Fast
 – Die Young

• **Main Sequence Phase**:
 – Burn H to He in core via CNO cycle
 – Build up a He core, like low-mass stars
 – Lasts for only ~ 10 Myr
Maximum Mass: $60-100 \, M_{\text{sun}}$

- If a star is too massive, the core gets so hot that:
 - Radiation pressure overcomes gravity
 - Star becomes unstable & disrupts.
- Ultimate limit is not precisely known
- Such stars should be very rare.
- Massive stars live on the edge...
Red Supergiant Phase

• After H core exhaustion:
 – Inert He core contracts & heats up
 – H burning in a shell around the He core
 – Huge, puffy envelope ~ size of orbit of Jupiter

• Moves horizontally across the H-R diagram:
 – Takes ~ 1 Myr to cross H-R diagram
Crossing the Supergiant Branch

Temperature (K) vs. Luminosity (L_{\odot}) graph:
- The graph shows a line labeled "Main Sequence" descending from high temperature and high luminosity to lower temperature and lower luminosity.
- Another line labeled "Red Supergiant" is shown crossing the "Main Sequence."
Helium Flash

• Core Temperature reaches 170 Million K
• Ignites Helium burning to C & O:
 – Rapid Phase: ~ 1 Myr
 – He burning in the core
 – H burning in a shell
 – Start building a C-O core
• Star becomes a *Blue Supergiant*.
Blue Supergiant

Temperature (K)

Luminosity (L_{sun})

Main Sequence

Blue Supergiant

Helium Flash
He Core Exhaustion

• When He runs out in the core:
 – Inert C-O core collapses & heats up
 – H & He burning moves into shells
 – Becomes a Red Supergiant again

• C-O Core collapses until:
 – $T_{\text{core}} > 600$ Million K
 – density $> 150,000$ g/cc

• Ignites Carbon Burning in the Core.
End of Helium Burning
Carbon Burning:

- **Nuclear reaction network**: $^{12}\text{C} + ^{12}\text{C}$ fuses to:
 - ^{24}Mg
 - $^{20}\text{Ne} + ^4\text{He}$
 - $^{16}\text{O} + 2 \times ^4\text{He}$

- Build up an inert O-Ne-Mg core

- Very inefficient:
 - Makes many neutrinos
 - Lasts only ~1000 years before C runs out.
End of Carbon Burning Phase:

- Inert O-Ne-Mg Core
- C Burning Shell
- He Burning Shell
- H Burning Shell
- Red Supergiant Envelope
Intermediate Mass Stars

• Stars with $4 < M < 8 \, M_{\text{sun}}$
• After 1000 years:
 – Inert O-Ne-Mg core contracts & heats up
 – C, He, & H burning shells
• Thermal pulses destabilize the envelope:
 – Eject the envelope in a massive stellar wind.
 – Leave O-Ne-Mg white dwarf core behind.
High Mass Stars: $M > 8 \, M_{\text{sun}}$

• At the onset of Carbon Burning:
 – Evolution is so fast that the envelope can no longer respond.
 – Should see little outward sign of the inward turmoil to come.

• Exception:
 Strong stellar winds can erode the envelope, changing the outward appearance of the star.
Neon Burning

- O-Ne-Mg core contracts & heats up until:
 - $T_{\text{core}} \sim 1.5$ Billion K
 - density $\sim 10^7$ g/cc

- Ignite Neon burning:
 - reaction network makes O, Mg, & others
 - Huge neutrino losses: $> L_*$
 - Builds a heavy O-Mg core

- Lasts for a few years before Ne runs out.
Oxygen Burning

• Ne runs out, core contracts & heats up until:
 – $T_{\text{core}} \sim 2.1 \text{ Billion K}$
 – density $\sim \text{ few x } 10^7 \text{ g/cc}$
• Ignite Oxygen burning:
 – reaction network making Si, S, P, & others
 – Huge neutrino losses: $> 100,000 \ L_*$
 – Builds a heavy Si core.
• Lasts for $\sim 1 \text{ year}$ before O runs out.
Silicon Burning

• O runs out, Si core contracts & heats up until:
 – $T_{\text{core}} \sim 3.5 \text{ Billion K}$
 – density $\sim 10^8 \text{ g/cc}$

• Ignite Silicon burning:
 – Si melts into a sea of ^4He, p, & n
 – Fuses with rest into Nickel (Ni) & Iron (Fe)
 – Builds a heavy Ni/Fe core.

• Lasts for ~ 1 day...
The Nuclear Impasse

• Fusion of light elements releases *nuclear binding energy*.

• Iron (Fe) is the most tightly bound nucleus:
 – Fusion of nuclei lighter than Fe *release* energy.
 – Fusion of nuclei heavier than Fe *absorb* energy.

• Once an Fe core forms, there are no new fusion reactions left for the star to tap.
End of Silicon Burning Phase:

- Si Burning Shell
- O Burning Shell
- Ne Burning Shell
- C Burning Shell
- He Burning Shell
- H Burning Shell

Envelope: ~ 5 AU

Core Radius: ~1 \(R_{\text{earth}} \)
End of the Road

• At the end of the Silicon Burning Day:
 – Star builds up an inert Fe core
 – Series of nested nuclear burning shells

• Finally, the Fe core exceeds $1.2 - 2 \, M_{\text{sun}}$:
 – Fe core begins to contract & heat up.
 – This collapse is final & catastrophic
Last Days of a Massive Star

• Burn a succession of nuclear fuels:
 – Hydrogen burning: 10 Myr
 – Helium burning: 1 Myr
 – Carbon burning: 1000 years
 – Neon burning: ~10 years
 – Oxygen burning: ~1 year
 – Silicon burning: ~1 day

• Build up an inert Iron core in the center.
Inside a Massive Star on the Brink:

- H Burning Shell
- He Burning Shell
- C Burning Shell
- Ne Burning Shell
- O Burning Shell
- Si Burning Shell
- Inert Fe-Ni Core
- Envelope: ~5 AU
- Core Radius: ~1 R_{earth}
Iron Core Collapse

• Iron core with $M \sim 1.2 - 2 \ M_{\text{sun}}$
 – Collapses & begins to heat up
 – Reaches $T > 10$ Billion K & density $\sim 10^{10} \text{ g/cc}$

• Two energy \textit{consuming} processes kick in:
 1) Nuclei photodisintegrate into He, p & n
 2) protons & electrons combine to form neutrons & neutrinos. Neutrinos escape.

• Both rob energy, hastening the core’s collapse
Catastrophic Collapse

• Start of Iron Core collapse:
 – Radius ~ 6000 km (~R_{earth})
 – Density ~ 10^8 g/cc

• Within 1 second:
 – Radius ~50 km
 – Density ~10^{14} g/cc
 – Collapse Speed ~ 0.25 c!
Core Bounce

• Density of collapsing core hits $\sim 2.4 \times 10^{14} \text{ g/cc}$
 = density of atomic nuclei!

• Strong nuclear force comes into play!

• Inner $0.7M_{\text{sun}}$ of the core:
 – comes to a screeching halt
 – overshoots & springs back a little ("bounces")

• Infalling gas hits the bouncing core head-on!
Post-Bounce Shockwave

• Shockwave spreads out from core bounce:
 – Kinetic Energy is $\sim 10^{51}$ ergs!
 – *Stalls out* after only 25-40 millisec because of a traffic jam between in falling & outflowing gas.

• Meanwhile, *neutrinos* pour out of the core:
 – trapped by the dense surrounding gas
 – leads to rapid heating of the gas
 – in turn leads to violent convection
New, Improved Shockwave

- Violent convection breaks the traffic jam
- Shockwave is regenerated in ~300 millisec.
- Smashes out through the star:
 - Breakout speed ~0.1c!
 - Explosive nuclear fusion in wake of blast produces more heavy elements
 - Heats up and accelerates envelope gas
- In a few hours, shock breaks out of the surface
Supernova!

- At shock breakout:
 - Star brightens to \(~10 \text{ Billion } L_{\text{sun}}\) in minutes.
 - Can outshine an entire galaxy of stars!
- Outer envelope blasted off:
 - accelerated to a few \(\times 10,000 \text{ km/sec}\)
 - gas expands & cools off
- Supernova fades out over a few months.
Historical Supernovae

• **1054 AD:** “Guest Star” in Taurus observed by Chinese astronomers (Song dynasty).
 – Visible in daylight for 23 days.
• **1572:** Tycho Brahe’s Supernova
• **1604:** Johannes Kepler’s Supernova
• **6000-8000BC:** Vela supernova
 – observed by the Sumerians; appears in legends about the god Ea.
Crab Supernova
Supernova 1987a

• Nearest visible supernova since 1604.

• January 1987:
 – 15 M$_{\odot}$ Blue Supergiant Star SK-69°202 Exploded in the Large Magellanic Cloud.
 – Saw a pulse of neutrinos, then the blast.
 – Continued to follow it for the last decade.

• Wealth of information on supernova physics.
Nucleosynthesis

• Start with Hydrogen & Helium:
 – Fuse Hydrogen into elements up to Iron/Nickel
 – These accumulate in the core layers of stars.

• Supernova Explosion:
 – “explosive” nuclear fusion builds more light elements up to Iron & Nickel.
 – fast & slow neutron reactions build Iron & Nickel into heavy elements up to 254Cf
Top Ten Most Abundant Elements

- 10) Sulfur
- 9) Magnesium
- 8) Iron
- 7) Silicon
- 6) Nitrogen
- 5) Neon
- 4) Carbon
- 3) Oxygen
- 2) Helium
- 1) Hydrogen
Supernova Remnants

• What happens to the envelope?
 – Enriched with metals in the explosion
 – Expands at a few $\times 10,000$ km/sec

• Supernova Blast Wave:
 – Plows up the surrounding interstellar gas
 – Heats & stirs up the interstellar medium
 – Hot enough to shine as ionized nebulae up to a few thousand years after the explosion
Stardust

- Metal-enriched gas mixes with interstellar gas
 - Next generation of stars includes these metals.
 - Successive generations are more metal rich.
- Sun & planets (& us):
 - Contain many metals (iron, silicon, etc.)
 - Only ~5 Gyr old
- The Solar System formed from gas enriched by a previous generation of massive stars.
Cygnus Loop:
Scraps of an old Supernova Remnant
Summary:

• End of the Life of a Massive Star:
 – Burn H through Si in successive cores
 – Finally build a massive Iron core.
• Iron core collapse & core bounce
• Supernova Explosion:
 – Explosive envelope ejection
 – Main sources of heavy elements
Questions:

• Where did elements like U, Th, Pb, Au, Ag, etc. come from?
• Where did C, O, N, etc. come from?
• How did all that get mixed up in the Sun?
• Do Supernovae still explode in the Universe?
• What would happen if a Sn exploded near the Earth?