The Age of the Sun and Energy Transport in Stars

Astronomy 101
Why do stars shine?

• Stars shine because they are *hot*.
 – emit thermal (~blackbody) radiation
 – heat “leaks” out of their photospheres.

• Luminosity = rate of energy loss.

• To *stay* hot, stars must make up for the lost energy, otherwise they would go out.
Case Study: The Sun

• **Question:**
 How long can the Sun shine?

• **Answer:**
 Consider the **internal heat content** of the Sun.
 Luminosity = rate of heat loss.

 \[
 \text{Lifetime} = \frac{\text{Internal Heat}}{\text{Luminosity}}
 \]
What if no source of energy?

- The Sun’s Luminosity losses would not be balanced by input of new internal heat.
 - The Sun would steadily cool off & fade out.
- 18th Century:
 - Assumed a solid Sun (iron & rock)
 - Found Lifetime ~ 10 Million Years
- No Problem:
 Earth was thought to be thousands of years old.
The Age Crisis: Part I

• Late 1800s:
 – Geologists: Earth was *millions* of years old.
 • How can Earth be older than the Sun?
 – Astronomers: The Sun is a big ball of gas in *Hydrostatic Equilibrium*.

• Kelvin & Helmholtz proposed *Gravitational Contraction* as a source of energy.
Kelvin-Helmholtz Mechanism

• Luminosity radiates away heat
 – Outer layers of the Sun cool at little, lowering the gas pressure.
 – Lower Pressure means Gravity gets the upper hand and the star contracts a little.
 – Contraction compresses the core, heating it up a little, adding heat to the Sun.

• Sun could shine for ~100 Million years
Gravity & Pressure in Equilibrium
Luminosity radiates away heat & Pressure

Drops
Balance tips in favor of gravity, Sun shrinks.
Contraction makes core heat up, increasing the internal Pressure.
Balance restored, but with higher gravity, pressure & temperature than before...

Starts the cycle all over again...
The Age Crisis: Part II

• **Early 1900s:**
 • Geologists show that the Earth is $>2 \text{ Billion}$ years old.

• **Kelvin Says:**
 The Geologists are wrong.

• **Nature Says:**
 Kelvin is wrong... There is new physics.
Nuclear Fusion

• **1905:**
 Einstein demonstrates that Mass and Energy are equivalent: $E=mc^2$

• **1920s:**
 Eddington noted that 4 protons have 0.7% more mass than 1 Helium nucleus (2p+2n).
 If 4 protons fuse into 1 Helium nucleus, the remaining 0.7% of mass is converted to **energy**.
Fusion Energy

- Fuse 1 gram of Hydrogen into 0.993 grams of Helium.
- Leftover 0.007 grams converted into Energy:
 - $E = mc^2 = 6.3 \times 10^{18}$ ergs
- Enough energy to lift 64,000 Tons of rock to a height of 1 km.
Hydrogen Fusion

• **Question:**
 How do you fuse $4 \, ^1\text{H} \,(p)$ into $^4\text{He} \,(2p+2n)$?

• **Issues:**
 Four protons colliding at once is unlikely.
 Must turn 2 of the protons into neutrons.
 Must be hot: >10 Million K to get protons close enough to fuse together.
Proton-Proton Chain:

\[p + p \rightarrow ^2H + e^+ + \nu_e \ (\text{twice}) \]
\[^2H + p \rightarrow ^3\text{He} + \gamma \ (\text{twice}) \]
\[^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + p + p \]

3-step Fusion Chain
positron neutrino

^2H

^3He

^4He

photon
The Bottom Line

• Fuse 4 protons (^1H) into one ^4He nucleus.
• Release energy in the form of:
 – 2 Gamma-ray photons
 – 2 neutrinos that leave the Sun
 – 2 positrons that hit nearby electrons, creating two more Gamma-ray photons
 – Motions (heat) of final ^4He and 2 protons.
The Age Crisis: Averted

- Luminosity of the Sun is \(\sim 4 \times 10^{33}\) erg/sec
 - Must fuse \(\sim 600\) Million Tons of H into He every second.
 - \(\sim 4\) Million tons converted to energy per second.
 - Sun contains \(\sim 10^{21}\) Million Tons of Hydrogen
 - Only \(\sim 10\%\) is hot enough for fusion to occur.

- Fusion Lifetime is \(\sim 10\) Billion Years.
Test: Solar Neutrinos

• **Question:**
 How do we **know** that fusion is occurring in the core of the Sun?

• **Answer:**
 Look for the **neutrinos** created in Step 1 of the Proton-Proton chain.
What are Neutrinos?

- Massless, weakly interacting neutral particles.
- Travel at the speed of light.
- Can pass through a block of lead 1 parsec thick!

- Any neutrinos created by nuclear fusion in the Sun’s core would stream out of the Sun at the speed of light.
Solar Neutrinos: Observed!

• Detection of neutrinos is very hard:
 – Need massive amounts of detector materials
 – Work underground to shield out other radiation

• Answer:
 – We detect neutrinos from the P-P chain in all the experiments performed to date!

• Success! But...
The Solar Neutrino Problem

• We detect only \(\sim 1/3\) of the number expected...

• Why?
 – Is our solar structure model wrong?
 – Is the subatomic particle theory of neutrinos wrong?

• The last seems most plausible
 – recent evidence neutrinos have mass
 – question for the physics of 21st century!
Putting Stars Together

• Physics needed to describe how stars work:
 • Law of Gravity
 • Equation of State ("gas law")
 • Principle of Hydrostatic Equilibrium
 • Source of Energy (e.g., Nuclear Fusion)
 • Movement of Energy through star
Hydrostatic Equilibrium

• Balance between Pressure & Gravity.
 – If Pressure dominates, the star expands.
 – If Gravity dominates, the star contracts.

• Sets up a Core-Envelope Structure:
 – Hot, dense, compact core.
 – Cooler, low-density, extended envelope.
Energy Generation

• *Stars shine because they are hot.*
• To *stay* hot stars must make up for the energy lost by shining.
• Two Energy sources available:
 – Gravitational Contraction (Kelvin-Helmholtz)
 • Only available if star is NOT in equilibrium
 – Nuclear Fusion in the hot core.
Main-Sequence Stars

• Generate energy by fusion of $4\, ^1\text{H}$ into $1\, ^4\text{He}$.

• **Proton-Proton Chain:**
 – Relies on proton-proton reactions
 – Efficient at low core Temperature ($T_C<18\text{M K}$)

• **CNO Cycle:**
 – Carbon acts as a *catalyst*
 – Efficient at high core Temperature ($T_C>18\text{M K}$)
Proton-Proton Chain:

\[
p + p \rightarrow ^2\text{H} + e^+ + \nu_e \text{ (twice)}
\]

\[
^2\text{H} + p \rightarrow ^3\text{He} + \gamma \text{ (twice)}
\]

\[
^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + p + p
\]
CNO Cycle:

\[^{12}\text{C} + p \rightarrow ^{13}\text{N} + \gamma \]

\[^{13}\text{N} \rightarrow ^{13}\text{C} + e^+ + \nu_e \]

\[^{13}\text{C} + p \rightarrow ^{14}\text{N} + \gamma \]

\[^{14}\text{N} + p \rightarrow ^{15}\text{O} + \gamma \]

\[^{15}\text{O} \rightarrow ^{15}\text{N} + e^+ + \nu_e \]

\[^{15}\text{N} + p \rightarrow ^{12}\text{C} + ^4\text{He} \]
Controlled Nuclear Fusion

• Fusion reactions are *Temperature sensitive*:
 – Higher Core Temperature = More Fusion
 – $\varepsilon(\text{PP}) \sim T^4$
 – $\varepsilon(\text{CNO}) \sim T^{18}$

• BUT,
 – More fusion makes the core *hotter*,
 – *Hotter* core leads to even more fusion, ...

• Why doesn’t it blow up like an H-Bomb?
Hydrostatic Thermostat

• If fusion reactions run too fast:
 – core *heats up*, leading to *higher pressure*
 – pressure *increase* makes the core *expand*.
 – expansion *cools* core, *slowing* fusion.

• If fusion reactions run too slow:
 – core *cools down*, leading to *lower pressure*
 – pressure *drop* makes the core *contract*.
 – contraction *heats* core, *increasing* fusion.
Thermal Equilibrium

• Heat always flows from hotter regions into cooler regions.

• In a star, heat must flow:
 – from the hot core,
 – out through the cooler envelope,
 – to the surface where it is radiated away as light.
Energy Transport

• There are 3 ways to transport energy:
 • 1) Radiation:
 Energy is carried by photons
 • 2) Convection:
 Energy carried by bulk motions of gas
 • 3) Conduction:
 Energy carried by particle motions
Radiation

• Energy is carried by photons.
 – Photons leave the core
 – Hit an atom or electron within ~1cm and get scattered.
 – Slowly stagger to the surface ("random walk")
 – Break into many low-energy photons.

• Takes ~1 Million years to reach the surface.
Random Walk
Convection

- Energy carried by bulk motions of the gas.
- Analogy is water boiling:
Conduction

• Heat is passed from atom-to-atom in a dense material from hot to cool regions.

• **Analogy:**
 Holding a spoon in a candle flame, the handle eventually gets hot.
Energy Transport in Stars

• **Normal Stars:**
 – A mix of Radiation & Convection transports energy from the core to the surface.
 – Conduction is inefficient (density is too low).

• **White Dwarfs:**
 – Ultra-dense stars
 – Conduction dominates energy transport.
Summary:

• Stars shine because they are hot.
 – need an energy source to stay hot.

• Kelvin-Helmholtz Mechanism
 – Energy from slow Gravitational Contraction
 – Cannot work to power the present-day Sun

• Nuclear Fusion Energy
 – Energy from Fusion of 4^1H into 1^4He
 – Dominant process in the present-day Sun
Summary:

• Energy generation in stars:
 – Nuclear Fusion in the core.
 – Controlled by a Hydrostatic “thermostat”.

• Energy is transported to the surface by:
 – Radiation & Convection in normal stars
 – Conduction in white dwarf stars

• With Hydrostatic Equilibrium, these determine the detailed structure of a star.
Questions

• Do other stars also produce energy by nuclear fusion?
• Why doesn’t the Sun explode?
• How long can other stars last?
• Are there other objects that “shine” via gravitational contraction?
Questions

• Which stars generate energy primarily via the CNO cycle and which by the PP cycle?
• Why are MV stars less luminous than GV stars? OV more luminous?
• What will happen when a star runs out of fuel?
• What is going on in Supergiants? Giants?