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We present a new class of high-order imaginary time propagators for path integral Monte Carlo
simulations that require no higher order derivatives of the potential nor explicit quadratures of
Gaussian trajectories. Higher orders are achieved by an extrapolation of the primitive second-order
propagator involving subtractions. By requiring all terms of the extrapolated propagator to have the
same Gaussian trajectory, the subtraction only affects the potential part of the path integral. The
resulting violation of positivity has surprisingly little effects on the accuracy of the algorithms at
practical time steps. Thus in principle, arbitrarily high order algorithms can be devised for path
integral Monte Carlo simulations. We verified the fourth, sixth, and eighth order convergences of
these algorithms by solving for the ground state energy and pair distribution function of liquid 4He,
which is representative of a dense, and strongly interacting, quantum many-body system.
© 2010 American Institute of Physics. �doi:10.1063/1.3297888�

I. INTRODUCTION

Many quantum Monte Carlo �QMC� techniques, such as
path integral �ground state� Monte Carlo �PI�GS�MC� and
diffusion Monte Carlo �DMC�, rely on stochastic propaga-
tion of the Schrödinger equation in imaginary time. In all
these methods, the probability distribution sampled is the
matrix element, or the trace, of the imaginary time propaga-
tor

G��� = e−�H = e−��T+V�, �1�

with Hamiltonian H=T+V and kinetic and potential opera-
tors T= �−�2 /2m��i�i

2 and V=�i�jv�rij�. Since G��� is gen-
erally unknown, � is usually discretized into a sum of short
time steps � so that the full propagator G��� can be approxi-
mated by a product of short-time approximate propagator

G̃���. If G̃��� is accurate to high orders in �, then a large �
can be used to span a given imaginary time interval, resulting
in fewer samplings of �but possibly computationally more

complex� G̃���. As recently demonstrated by Sakkos,
Casulleras, and Boronat,1 such a higher order propagator can
be highly efficient in projecting out ground state properties
by minimizing the number of “beads,” or time slices, re-
quired in large scale path integral Monte Carlo �PIMC� cal-
culations. Hence, the ability to use large time steps is one
way to improve efficiency. Other measures to improve effi-
ciency are “smarter” MC sampling moves, as was impres-
sively demonstrated by the worm algorithm for PIMC simu-
lations at finite temperature.2 The present work is about the
first kind of efficiency improvement, “smarter” propagators.

For QMC simulations, there is a surprising lack of gen-
eral higher order algorithms. For example, one has the well
known second order, primitive propagator

G2��� = e−�V/2e−�Te−�V/2 = G��� + O��3� . �2�

�For computing the trace, any splitting first-order algorithm,
such as e−�Ve−�T, will also yield a second-order trace.3� The
highly successful pair-density propagator, which approxi-
mates G by a pairwise product of exact two-body
propagators,4 must also be second order in the general many-
particle case, but possibly with a very small error coefficient.
�Reference 5 showed an empirical cubic convergence for a
cluster of 22 hydrogen molecules. For such a small cluster,
only 5 particles are in the core region of density �
�0.02 Å−3. The remaining 17 particles are at the surface
region with an average density of only 0.009 Å−3. Since the
pair-density propagator is exact in the low density limit, this
excellent behavior is not unexpected. However, the off-
diagonal pair density was later found not to be properly
implemented.6� The necessity of evaluating the exact two-
particle density matrix also limits the pair-density algorithm
to only spherically symmetric interactions.

The only fourth-order method known for many years is
the Takahashi–Imada,7 Li–Broughton8 propagator

GTI��� = e−�T/2e−�V−��3/24��V,�T,V��e−�T/2 = G��� + O��3� , �3�

where �V , �T ,V��= ��2 /m��i��iV�2. This “corrector” propaga-
tor is only second order, but yields a fourth-order trace, as
explained in Ref. 3. Thus until recently, there were only two
second-order and one fourth-order algorithm for PIMC simu-
lations.

The problem of constructing higher order PIMC algo-
rithms is the time-irreversible nature of the imaginary time
Schrödinger equation. The short-time propagator can in gen-
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eral be approximated to any order by a product decomposi-
tion,

e−��T+V� � �
i=1

N

e−ti�Te−vi�V, �4�

with coefficients 	ti ,vi
 determined by the required order of
accuracy. However, in QMC applications, since
�R��e−ti�T�R��e−�R�− R�2/�4Dti�� is the diffusion kernel with D
=�2 /2m, the coefficient ti must be positive in order for the
kernel to be normalizable as a probability distribution. As
first proved by Sheng9 and Suzuki,10 and later by
Goldman–Kaper11 and Chin,12 beyond second order, any fac-
torization of the form �4� must contain some negative coef-
ficients in the set 	ti ,vi
. Thus, despite myriad of higher-
order propagators of the single product form �4� for solving
the time-reversible, real-time Schrödinger equation, none can
be applied in PIMC beyond second order. It is only in the last
decade that bona fide fourth order, forward algorithms with
all positive coefficients have been found13,14 and applied to
DMC and PIMC simulations.15–17 In order to circumvent the
Sheng–Suzuki theorem, one must include the operator
�V , �T ,V�� in the factorization process. Unfortunately, it is
not possible to go beyond fourth-order by including more
operators. It has been shown18 that a forward sixth-order
propagator would have required the operator
�V , �T , �T , �T ,V����, which is nonseparable and impractical to
implement. Recently, by fine-tuning a family of fourth-order
forward algorithm with two free parameters19 such that the
fourth-order error is zero, Sakkos, Casulleras and Boronat,1

and later also one of us,20 have achieved sixth-order conver-
gence in computing the energy of a number of quantum sys-
tems including liquid 4He. Despite this spectacular advance,
it must be noted that the fine-tuning must be done, in prin-
ciple, for each individual observable. The algorithm is there-
fore only ‘‘quasi’’ sixth-order rather than uniformly sixth-
order.

There are recent attempts of deriving fourth and higher
order PIMC algorithms without the use of operator splitting,
which is the principle focus of this work. The algorithm de-
rived by Bogojević et al.21,22 required higher and higher or-
der derivatives of the potential, which are increasingly sin-
gular for Lennard-Jones type potentials and difficult to
implement for more than a few particles. Predescu23,24 ap-
proximated the Feynman–Kac formula via a stochastic ver-
sion of the Magnus expansion, requiring explicit quadrature
of random trajectories and applicable only to potentials with
finite Gaussian transforms. This excluded most Lennard-
Jones type potentials with a strongly repulsive core. Both
algorithms showed fourth-order convergence only for very
smooth quartic, exponential, or sum of cosines potentials,25

while for a one-dimensional Lennard-Jones model, conver-
gence to fourth order seemed only asymptotic.23 Both of
these recent methods have yet to be fully tested on a strongly
interacting, realistic many-body system.

In this paper, we will present the first QMC simulation
using a bona fide sixth- and eighth-order algorithms. These
algorithms use only the potential and have no need of ex-
plicit quadratures. They are based on the multi-product

expansion26 of the short time propagator, which is an alter-
native way of circumventing the Sheng–Suzuki Theorem in
achieving higher order convergences. This is reviewed in
Sec. II A and followed by a brief introduction to path inte-
gral ground state Monte Carlo �PIGSMC� in Sec. II B. Sec-
tion III verifies the order of convergence of these extrapo-
lated algorithms when solving for the ground state properties
of bulk liquid helium using 64 particles. Liquid helium is a
widely recognized, strongly interacting and very dense,
quantum many-body system.

II. THEORY

A. Multi-product expansion of G

Let G2��� denote the second-order split propagator �2�,
then for a given set of n whole numbers 	ki
, the multi-
product expansion of Ref. 26 yields the following 2n-order
propagator:

G2n��� = �
i=1

n

ciG2
ki��/ki� = G��� + O��2n+1� , �5�

where the expansion coefficient has the closed form

ci = �
j=1��i�

n
ki

2

ki
2 − kj

2 . �6�

For PI�GS�MC, it is convenient to choose the sequences
	ki
= 	1,2
, 	1,2,4
 and 	1,2,3,6
 to produce the following
fourth, sixth, and eighth-order propagators:

G4��� = −
1

3
G2��� +

4

3
G2

2 �

2
� , �7�

G6��� =
1

45
G2��� −

4

9
G2

2 �

2
� +

64

45
G2

4 �

4
� , �8�

G8��� = −
1

840
G2��� +

2

15
G2

2 �

2
� −

27

40
G2

3 �

3
�

+
54

35
G2

6 �

6
� . �9�

As we will see later, these sequences are chosen because they
are the minimal “commensurate” sequences. Schmidt and
Lee27 previously suggested the use of Eq. �7� in path inte-
grals and did use it in computing the two-particle density
matrix. However, they did not suggest that it can be used for
doing PIMCs. Brualla28 suggested extrapolations not of the
propagator, but of the energy using reweighting which, how-
ever, lead to large statistical noise.

Since G����0, only the error terms in Eq. �5� can be
negative. Thus for sufficiently small �, these extrapolated
propagators, despite the explicit subtractions, are mostly
positive. Only when � is very large can the error terms over-
whelm G��� in a significant fraction of the configuration
space. However, such large � cannot be used anyway because
the propagators would then be highly inaccurate. One might
argue that the error terms can be so singular that despite the
smallness of �, it can overwhelm G��� at some specific loca-
tions. However, this cannot happen because by construction
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G2��� is bounded everywhere and the subtraction of two
bounded functions cannot be singular. As we will see below,
the subtraction is further limited to subtracting only expo-
nentials of the potential energy, and each exponential is ev-
erywhere bounded for Lennard-Jones type potentials with a
repulsive core. The exception is the attractive Coulomb po-
tential, for which G2��� is singular at the origin and its use in
naive PIMC simulation does not give the expected quadratic
convergence. However, as shown by Li and Broughton,8 qua-
dratic convergence can be restored by implementing the
Takahashi–Imada7 propagator, which is everywhere nonsin-
gular at a finite �. �Note that the commutation �V , �T ,V�� is
part of the propagator only and should not be included in
computing the energy.� In this work, we will assume that we
are extrapolating a G2��� that is quadratically convergent.
For the Coulomb potential, one must not use the naive G2���
of Eq. �2�, but replace it with GTI��� of Eq. �3� instead.

B. Path integral ground state Monte Carlo

The above multiproduct propagators can be applied to
any general PIMC simulations. Here, we will implement it in
the specific context of PIGSMC. PIGSMC samples the
whole probability distribution function corresponding to a
discretized imaginary time propagation from a trial wave
function �T�R� to the �in principle� exact ground state
�0�R�, where R denotes all degrees of freedom, e.g., for the
translational coordinates of N particles, R= �r1 , . . . ,rN�.

For any trial wave function �T with nonzero overlap
with the exact ground state, the exact ground state wave
function can be obtained by evolving in imaginary time

�0�R� � lim
	/2→


� GR,R�,
	

2
��T�R��dR�.

G�	 /2� is evaluated by factorizing it into a product of small
time step propagators G���, �=	 /2M, which can be approxi-
mate by one of the above-mentioned short time approxima-
tions. Therefore, the full probability distribution to be
sampled is

P�R0, . . . ,R2M�

=
1

N
�T�R0�G�R0,R1;�� . . . G�R2M−1,R2M ;���T�R2M� ,

so that the expectation value ��0�A��0� of a local operator
A�R� is evaluated by sampling A at the central time step,
A�RM�. For the energy, we take advantage of �H ,G�=0 to
obtain the energy estimator in terms of the local energy of
the trial wave function EL�R�=H�T /�T,

E0 =� dR0 . . . dR2MEL�R0�P�R0, . . . ,R2M� .

These multi-dimensional integrations can be carried out with
the Metropolis method.

C. Implementing multi-product expansions in PIGSMC

To see how one can implement these multi-product
propagators in PIGSMC, we will now give a detailed discus-
sion of the fourth order case. Considering G4 at time step
size 2�,

G4�2�� = 4
3e−�V/2e−�Te−�Ve−�Te−�V/2 − 1

3e−�Ve−2�Te−�V.

In evaluating the matrix element of G4�2��, since the first
term on the right hand side has one more operator e−�T, it
would require one more intermediate state integration than
the second term, resulting in two dissimilar terms difficult to
sample uniformly. That is, each term corresponds to sam-
pling a different Gaussian random path with a different vari-
ance. One of the key contribution of this work is to enforce
uniformity by artificially splitting the single operator e−2�T in
the second term into two,

G4�2�� = 4
3e−�V/2e−�Te−�Ve−�Te−�V/2 − 1

3e−�Ve−�Te−�Te−�V,

�10�

which then results in the following coordinate representation:

�1�G4�2���3� =� d2�1�e−�T�2��2�e−�T�3�

� �4

3
e−�V1/2−�V2−�V3/2 −

1

3
e−�V1−�V3�

=� d2G0�12;��G0�23;��

�e−�V1/2−�V2−�V3/2F�123,�� , �11�

where we have abbreviated Vk=V�Rk�, Rk→k and denoted

F�123,�� = 1
3 �4 − e−��V1+V3�/2−�V2� , �12�

and the free propagator

G0�12;�� = �1�e−�T�2� = �4�D��−3N/2e−�R1 − R2�2/4D�. �13�

We observe that �1� without the factor F, Eq. �11� is just the
second-order algorithm repeated twice. �2� By including F,
only the potential energy needs to be extrapolated to achieve
fourth-order accuracy. �3� For sufficiently small �, F�0. �4�
If the potential function is mostly convex �such as Lennard-
Jones type potential near the potential minimum�, then one
has

V�R1� + V�R3�
2

 VR1 + R3

2
� . �14�

Since

G0�12;��G0�23;�� =
e−�1/2D���R2 − �R1 + R3�/2�2

�2�D��3N/2 G0�13;2�� ,

for fixed R1 and R3, R2 is normally distributed about
�R1+R3� /2 with width ���. If R2 is such that it is between
R1 and R3, then the convexity condition �14� would guaran-
tee Eq. �12� to be positive for all �. This only fails when the
width of the Gaussian distribution for R2 exceeds �R1

−R3� /2, suggesting that the near-positivity of F can extend
over a rather wide range of �, which is indeed observed.
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Metropolis sampling requires exact positivity of F, which we
ensure by using max�0,F�, i.e., rejecting moves where
F�0. We also collect statistics about these rejections, to
ensure that their rate is low, and decreasing with �.

For a system of particles subject to an external potential
Vext, in addition to the interaction potential, Vext could be
incorporated in G0 rather than in the potential Vi. G0 be-
comes a product of the exact single-particle propagators, and
the potential Vi in Eq. �12� is still the pure interaction poten-
tial. In particular, G4 is then separable in the sense that, for
noninteracting particles, G4 is just the product of single-
particle propagators G0.

The generalization to higher order is now clear. For the
sixth-order, Eq. �8�,

G6�4�� =
64

45
e−�V/2e−�Te−�Ve−�Te−�Ve−�Te−�Ve−�Te−�V/2

−
4

9
e−�Ve−�Te−�Te−2�Ve−�Te−�Te−�V

+
1

45
e−2�Ve−�Te−�Te−�Te−�Te−2�V, �15�

yielding the coordinate representation

G6�12345;4�� = G0�12;��G0�23;��G0�34;��G0�45;��

� �64

45
e−�V1/2−�V2−�V3−�V4−�V5/2

−
4

9
e−�V1−2�V3−�V5 +

1

45
e−2�V1−2�V5� .

�16�

Similarly for the eighth-order Eq. �9�,

G8�1234567;6��

= G0�12;��G0�23;�� . . . G0�67;��

��54

35
e−�V1/2e−�V2e−�V3e−�V4e−�V5e−�V6e−�V7/2

−
27

40
e−�V1e−2�V3e−2�V5e−�V7

+
2

15
e−3�V1/2e−3�V4e−3�V7/2 −

1

840
e−3�V1e−3�V7� . �17�

For commensurate sequences one can factor out all the free-
propagators and restrict the extrapolation process only to the
potential energy function.

III. RESULTS

We have implemented the PIGSMC algorithm using
multilevel sampling as described in the review Ref. 4 We
compare our new extrapolated fourth, sixth, and eighth order
propagators with the primitive �second-order� and the fourth-
order forward propagators14 4A,

G4A��� = e−��/6�Ve−��/2�Te−�2�/3�V−��3/72��V,�T,V��e−��/2�Te−��/6�V.

�18�

To demonstrate that our multi-product propagators work
for realistic, and strongly interacting quantum systems, we
apply them to the case of bulk liquid 4He. We calculate
the ground state energy E0 at equilibrium density �0

=0.021 86 Å−3, by a PIGSMC simulation of 64 4He atoms
in a simulation box with periodic boundary conditions. The
decay time is 	=0.25 K−1, and we use the potential by Aziz
et al.29 In Fig. 1 we show E0 /N as function of � for various
propagators. We fit the polynomial a+b�n �lines� to E0��� /N,
where n is the order of the respective propagator. Since the
order of E0��� is defined as the �→0 behavior, we have
restricted the fits to small values of �—the end point of the
lines indicate the fitting interval. These propagators are com-
pared at equal time steps: G2���, G4���, G6���, and G8���, to
verify the order of convergence.

The primitive second-order propagator �open circle� is
clearly a poor approximation, with a large error even for
small �, and therefore requires a large number of beads. The
simplest fourth-order forward propagator 4A, Eq. �18�, is a
significant improvement, as can be seen in the behavior of
E0��� /N �open square�, with error coefficient smaller than
our fourth-order multiproduct propagator �11� �filled square�.
However, the forward 4A propagator requires the computa-
tion of �V , �T ,V��� ��iV�2, and its relative efficiency would
depend on the complexity of evaluating this gradient. Both
can be fitted well by a fourth-order polynomial with n=4.
Finally, the closed triangles and circles show the conver-
gence of the sixth order Eq. �16� and eighth order Eq. �17�
multiproduct expansion, which indeed has a smaller � depen-
dence in the range of Fig. 1. These multi-product propagators
are true high order propagators and will produce sixth and
eighth order convergences for the expectation value of any
observable. The present results constitute the first implemen-
tation of a QMC simulation with a bona fide imaginary time

−7.15

−7.10

−7.05

−7.00

0.000 0.005 0.010 0.015 0.020

E
/N

ε [K−1]

8th, MP
6th, MP
4th, MP
4th, 4A

2nd

FIG. 1. Ground state energy E0 of bulk 4He, simulated by 64 4He atoms, as
a function of imaginary time step �. Decay time was 	=0.25 K−1. We
compare results produced by the primitive second-order propagator G2���
and the fourth-order forward propagator �Ref. 14� G4A��� �denoted “4A”�
with our fourth, sixth, and eighth-order multiproduct propagators G4���,
G6���, and G8���, �denoted “MP”�. Each E0��� is fitted with the appropriate
polynomial.
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propagator of higher than fourth order. At small values of the
time step size, say at �=0.005, the sixth and eighth order
algorithms produce very precise results, which are not indi-
cated by Fig. 1.

The multi-product expansion of G, Eq. �5�, is not strictly
positive everywhere for a finite time step �, as we have dis-
cussed above for the fourth-order case. In Fig. 2 we show the
ratio Rn of attempted MC moves that are rejected due to
negativity of the multiproduct expansion. Rn is decreasing
with � as expected. Only in the sixth-order case we observed
a nonmonotonous behavior at very large � where the ratio Rn

decreases with increasing �. This occurs at large values of �
where the error of the energy E0��� /N is rapidly increasing
with � �outside the range of Fig. 1�. This may due to system
configurations with complicated intertwining negative and
positive regions of G. We want to stress that, since this hap-
pens only for � much too large for quantitatively correct
results, it poses no practical limitations.

The convergence plot Fig. 1 does not reveal the actual
computational effort required for a desired accuracy. From
our derivation, it is clear that the computational effort of G4,
G6, and G8 are roughly equivalent to running G2 twice, four,
and six times, respectively. This then means that for a given
� for G2���, one should compare it to G4 at 2�, G6 at 4�, and
G8 at 6�, that is, for an equal effort comparison, we should
compare G2���, G4�2��, G6�4��, and G8�6��. This is done in
Fig. 3. In this comparison, at a given � each algorithm uses
the same number of beads. For the forward algorithm 4A,
this comparison neglects the additional cost of evaluating the
gradient ��iV�2. If ��iV�2 required no additional effort to that
of evaluating the potential, then propagator 4A would actu-
ally outperform the extrapolated sixth- and eighth-order al-
gorithms at time steps ��0.003 K−1. This confirms that, in
principle, a purely forward time step algorithm can be more
efficient, provided that ��iV�2 can be easily evaluated. How-
ever, the higher order extrapolated algorithms are clearly
easier to derive and implement. Moreover, when very high
accuracy is required, such as the “chemical accuracy” re-
quired in quantum chemistry applications, then a higher or-
der algorithm will always outperform a lower order algo-
rithm. This is especially critical in determining the

equilibrium configuration or conformation of clusters and
macromolecules, where energy differences are very small.
Another example where high accuracy is required is the
study of quantum phase transitions, such as solidification of
a 4He layer on graphene.30

The ground state energy E0 is of course not the only
expectation value of interest that can be evaluated by QMC
simulations. An important structural quantity is the pair dis-
tribution function g�r�, the probability density for two par-
ticles separated by a distance r, normalized to g�r→
�=1.
For bulk systems, g�r� can be measured, and thus provides
another possibility to assess the accuracy of the interaction
potential model by comparing QMC and experimental results
for g�r�. However the calculation of such structural quanti-
ties by QMC is crucial if they cannot be obtained experimen-
tally. For example, in helium nanodroplet isolation spectros-
copy where chromophores are embedded in 4He droplets,
determining the chromophore-helium pair distribution func-
tion is essential for the calculation of absorption spectra.31

The time step-size error in observables other than E0 is
rarely examined in the literature. Here, we verify that our
algorithms are truly higher orders by showing the conver-
gence of the pair-distribution g�r� of bulk liquid helium. We
compute g�r� by taking averages from configurations at the
central time step, RM, and binning the distances of all pairs
of particles with bin size �r=0.18 Å. We examine the con-
vergence of g�r� at four different distances ri: at a small
distance r1=2.06 Å, almost inside the correlation hole,
where g�r� is strongly suppressed due to the repulsive part of
the He–He interaction; at r2=2.77 Å, where g�r� is steep
and rising to the maximum; at r3=3.48 Å, where g�r� attains
its maximum �within the bin size�; and at r4=4.38 Å, be-
tween the maximum and the first local minimum of g�r�. In
the four panels of Fig. 4 we show the pair distribution func-
tion g�ri ;�� as a function of the imaginary time step �. In
each panel, we indicate the location of ri by arrows in insets
showing g�r�. We compare our results obtained by the
fourth-order forward propagator14 G4A��� with our fourth,
sixth, and eighth-order multiproduct propagators G4���,

10−6

10−5

10−4

10−3

10−2

0.004 0.006 0.008 0.01 0.02 0.03

R
n

ε [K−1]

8th, MP
6th, MP
4th, MP

FIG. 2. The ratio Rn of rejected MC moves that would lead to a negative
propagator G. Rn is decreasing with time step �.

−7.15

−7.12

−7.09

−7.06

0.000 0.002 0.004 0.006

E
/N

ε [K−1]

8th, MP
6th, MP
4th, MP
4th, 4A

2nd

FIG. 3. A roughly equal effort comparison of algorithms G2���, G4�2��,
G6�4��, G8�6��, and G4A�2�� for the same ground state energy E0 as in
Fig. 1.
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G6���, and G8��� �we omit results for G2��� for clarity�. Each
g�ri ;�� is fitted by the appropriate polynomial in �.

At all examined locations ri, Fig. 4 shows that the con-
vergence behavior of g�r� is similar to that E0, as befitting
bona fide higher algorithms. The fourth order propagator G4A

and our multiproduct propagator G4��� perform similarly
well. The time step error is decreasing when we increase the
order of the propagator to sixth order, and further to eighth
order, as it should be. This demonstrates that the multiprod-
uct propagators Eqs. �7�–�9�—and surely also propagators of
higher than eighth order—are fully capable of producing cor-
respondingly higher order convergence results, not just for
the ground state energy E0= �H� but also for general observ-
ables that do not commute with H. As in the case of E0, the
calculation of g�r� is not adversely affected by the fact that
multiproduct propagators are not strictly positive every-
where.

The time step dependence of g�ri ;�� exhibits some
trends that are valid for all propagators. On an absolute scale,
the time step error is smallest for r1, where g�r� has a value
of only about 1% of the asymptotic limit g�r→
�=1. On a
relative scale, however, the time step error becomes as large
as about 30% in the top left panel of Fig. 4. We found the
largest error not for r3, where g�r� attains its maximum, but
for r2, where the derivative of g�r� attains its maximum. The

steep “wall” of the correlation hole is clearly most suscep-
tible to time step error. Finally, beyond the maximum of g�r�
at r3, the error decreases rapidly as evidenced by the results
for r4 in the bottom right panel of Fig. 4—despite the rela-
tively large derivative of g�r� at r4.

IV. CONCLUSION AND OUTLOOK

In this work, we have shown how to implement the mul-
tiproduct expansion of the imaginary time propagator in
QMC for solving strongly interacting quantum many-body
systems, such as 4He, to any desired order in the imaginary
time step �. In particular this work is the first demonstration
of truly sixth- and eighth-order QMC algorithms. In the case
of 4He, our results suggest that these higher than fourth-order
algorithms may not be more efficient than purely forward
time step fourth-order algorithms, but they do have the sim-
plicity of not requiring the potential gradient. This is particu-
larly useful in simulating non-Cartesian coordinate systems,
such as molecules32 with anisotropic constituents and rota-
tional degrees of freedom. Moreover, these extrapolated
propagators are the only higher order algorithms possible in
cases where the double-commutator cannot be evaluated,
such as for the diatoms-in-molecule potential.33 Finally, for
QMC applications where chemical accuracy is required, such
as in determining equilibrium configurations and conforma-
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FIG. 4. The pair distribution function g�r� of bulk 4He is shown as a function of the imaginary time step � for four different values of r �indicated by arrows
in the respective insets�. We compare results produced by the fourth-order forward propagator �Ref. 14� G4A��� �denoted “4A”� with our fourth, sixth, and
eighth-order multiproduct propagators G4���, G6���, and G8���, �denoted “MP”�. Each g�r ;�� is fitted with the appropriate polynomial in �.
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tions, our sixth and higher order multiproduct propagators
will be computationally more efficient than fourth-order
propagators.
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