Siu A. Chin

Professor of Physics, Texas A&M University

Fall 2014 Teaching: Physics 601

Phys601 Lectures and course information: Phys601 Syllabus HW1 Sept.1-2 Sept.8 HW2 Sept.10 Sept.15 HW3 Sept.16 Sept.17 HW4

Recent Publications

  1. S. A. Chin, "Understanding Saul'yev-Tpye Unconditionally Stable Schemes from Exponential Splitting", Numer. Methods Part. Diff. Eq. 2014; doi: 10.1002/num.21885
  2. S. A. Chin and Jurgen Geiser, "Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations", IMA Journal of Numerical Analysis 2011; doi: 10.1093/imanum/drq022
  3. S. A. Chin, "Multi-product splitting and Runge-Kutta-Nystrom integrators", Cele. Mech. Dyn. Astron. 106, 391-406 (2010).
  4. R. E. Zillich, J. M. Mayrhofer and S. A. Chin, "Extrapolated high-order propagators for path integral Monte Carlo simulations", J. Chem. Phys. 132, 044103 (2010).
  5. S. A. Chin, "Explicit symplectic integrators for solving nonseparable Hamiltonians", Phys. Rev. E 80, 037701 (2009)
  6. S. A. Chin, S. Janecek and E. Krotscheck "An arbitrary order diffusion algorithm for solving the Schrodinger equation", Comp. Phys. Comm. 180, 1700 (2009)
  7. S. A. Chin, S. Janecek and E. Krotscheck "Any order imaginary time propagation method for solving the Schrodinger equation", Chem. Phys. Lett. 470, 342 (2009)
  8. S. A. Chin, "Relativistic motion in a constant electromagnetic field", J. Math. Phys. 50, 012904 (2009)
  9. S. A. Chin, "Symplectic and energy-conserving algorithms for solving magnetic field trajectories", Phys. Rev. E 77, 066401 (2008)
  10. S. A. Chin, "Simulating rotating BEC: vortices formation and over-critical rotations", in the Proceeding of the 14th International Conference on "Recent Progress in Many-Body Theories", Edited by G. E. Astrakharchik, J. Boronat, and F. Mazzanti, 203-212 (2008).
  11. S. A. Chin,"Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities", Phys. Rev. E 76, 056708 (2007).
  12. S. A. Chin,"Forward and non-forward symplectic integrators in solving classical dynamics problems", Intl. J. Compt. Math. 84, 729-747 (2007).
  13. S. A. Chin,"The physics of symplectic integrators: perihelion advances and symplectic corrector algorithms", Phys. Rev. E 75, 036701 (2007).
  14. S. A. Chin, "A Fundamental Theorem on the Structure of Symplectic Integrators", Phys. Lett. A354, 373 (2006).
  15. S. A. Chin, "The Complete Characterization of Fourth-Order Symplectic Integrators with Extended-Linear Coefficients", Phys. Rev. E, 73, 026705 (2006).
  16. S. A. Chin and P. Anisimov, "Gradient Symplectic Algorithms for Solving the Radial Schrödinger Equation", J. Chem. Phys. 124, 054106 (2006).
  17. M. Aichinger, S. A. Chin, E. Krotscheck et al., "Effects of geometry and impurities on quantum rings in magnetic fields", Phys. Rev. B 73, 195310 (2006).
  18. A. Svidzinsky, S. A. Chin and M. Scully, "Model of molecular bonding based on the Bohr-Sommerfeld picture of atoms", Phys. Lett. A 355, 373 (2006)
  19. S. A. Chin and E. Krotscheck, "Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap", Phys. Rev. E 72, 036705 (2005).
  20. M. Aichinger, S. A. Chin and E. Krotscheck, "Fourth-order algorithms for solving local Schrödinger equations in a strong magnetic field", Comp. Phys. Comm. 171, 197-207 (2005).
  21. S. R. Scuro and S. A. Chin, "Forward symplectic integrators and the long-time phase error in periodic motions", Phys. Rev. E 71, 056703 (2005).
  22. S. A. Chin and C. R. Chen, "Forward symplectic integrators for solving gravitational few-body problems", Cele. Mech. Dyn. Astron. 91, 301-322 (2005).
  23. S. R. Scuro and S. A. Chin, "Exact evolution of time-reversible symplectic integrators and their phase errors for the harmonic oscillator", Phys. Lett. A 342, 397(2005).
  24. S. A. Chin, "Structure of positive decompositions of exponential operators", Phys. Rev. E 71, 016703 (2005).

Most Cited Publications

  1. S. A. Chin, "A Relativistic Many-Body Theory of High Density Matter", Ann. Phys. (NY) 108, 301 (1977). [Citations: 555]
  2. G. Baym and S. A. Chin "Can A Neutron Star be a Giant MIT Bag", Phys Lett. B 62, 241 (1976). [Citations: 294]
  3. S. A. Chin and A. Kerman, "Possible Long-Lived Hyperstrange Multiquark Droplets", Phys. Rev. Lett. 43, 1292 (1979). [Citations: 213]
  4. S. A. Chin and J. D. Walecka, "An Equation of State for Nuclear and Higher-Density Matter Based on a Relativistic Mean-Field Theory",
    Phys. Lett. 52B, 24 (1974). [Citations: 173]
  5. G. Baym and S. A. Chin, "Landau Theory of Relativistic Fermi Liquids", Nucl. Phys. A262, 527 (1976). [Citations: 169]
  6. S. A. Chin, "Transition to Hot Quark Matter in Relativistic Heavy-Ion Collisions", Phys. Lett. B78, 552 (1978). [Citations: 156]
  7. S. A. Chin, "Symplectic Integrators From Composite Operator Factorizations" Phys. Lett. A226, 344 (1997). [Citations: 108]
  8. S. A. Chin and E. Krotscheck, "Structure and Collective Excitations of 4He Clusters", Phys. Rev. B45, 852 (1992). [Citations: 100]
  9. S. A. Chin, "Quadratic Diffusion Monte Carlo Algorithm for Solving Atomic Many-Body Problems", Phys. Rev. A42, 6991 (1990). [Citations: 64]
  10. S. A. Chin, J. W. Negele and S. E. Koonin, "Guided Random Walks For Solving Hamiltonian Lattice Gauge Theories",
    Ann. Phys. (NY) 157, 140 (1984). [Citations: 55]