Probing SUSY Dark Matter at the LHC

Kechen Wang
Mitchell Institute for Fundamental Physics and Astronomy
Texas A&M University

Preliminary Examination, Feb 11, 2014
OUTLINE

Supersymmetry dark matter (DM)
- Relic density & DM composition
- LHC search status

DM search using Stop decay
- Stop decay & DM composition
- Light slepton case
- Heavy slepton case

DM search using Vector Boson Fusing (VBF) processes
- VBF signature
- Search strategy
- Results

Conclusion
Supersymmetric Dark Matter

(a) Fermion ↔ Boson
(b) R parity conserving SUSY, lightest neutralino $\tilde{\chi}_1^0 \rightarrow$ cold dark matter candidate

After EW symmetry breaking,

$$\tilde{\chi}_1^0 \sim (\tilde{B}, \tilde{W}, \tilde{H}_d, \tilde{H}_u) \quad \tilde{\chi}_1^+ \sim (\tilde{W}^+, \tilde{H}_u^+) \quad \tilde{\chi}_1^- \sim (\tilde{W}^-, \tilde{H}_d^-)$$

(Planck, 2013)
DM thermal relic density

After EW symmetry breaking, $\tilde{\chi}_1^0 \sim (\tilde{B}, \tilde{W}, \tilde{H}_d, \tilde{H}_u)$, $\tilde{\chi}_1^+ \sim (\tilde{W}^+, \tilde{H}_u^+)$, $\tilde{\chi}_1^- \sim (\tilde{W}^-, \tilde{H}_d^-)$

Composition

<table>
<thead>
<tr>
<th>Composition</th>
<th>To satisfy relic density</th>
<th>Generic case</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bino</td>
<td>20 - 100 GeV, depending on a slepton mass</td>
<td>small</td>
<td>large</td>
</tr>
<tr>
<td>Wino</td>
<td>~ 2.4 TeV</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>Higgsino</td>
<td>~ 1 TeV</td>
<td>large</td>
<td>small</td>
</tr>
</tbody>
</table>

Stop search: $\tilde{\chi}_1^0 \sim (\tilde{B}, \tilde{H})$

VBF DM search: $\tilde{\chi}_1^0 \sim \tilde{W}, \tilde{H}, (\tilde{B} + \tilde{H})$
LHC status of SUSY DM searches

Challenge: small production cross section of EW sector.

ATLAS

CMS
OUTLINE

Supersymmetry dark matter (DM)
- Relic density & DM composition
- LHC search status

DM search using Stop decay
- Stop decay & DM composition
- Light slepton case
- Heavy slepton case

DM search using Vector Boson Fusing (VBF) processes
- VBF signature
- Search strategy
- Results

Conclusion
DM search using Stop decay

Goal:
\[\tilde{t} \] decay → dark matter sector
in a scenario:
\[\tilde{\chi}_1^0 \sim (\tilde{B} + \tilde{H}) \]

Motivation:
\[\tilde{\chi}_1^0 \sim (\tilde{B} + \tilde{H}) \]
Light \[\tilde{t} \] → Correct relic density
Naturalness

Why Stop can be light?

Hierarchy Problem, naturalness

\[\Delta m^2_H \sim |y_t|^2 \left[-\Lambda_{\text{UV}}^2 + \frac{3}{2} m_t^2 \log \left(\frac{\Lambda_{\text{UV}}^2}{m_t^2} \right) + \Lambda_{\text{EW}}^2 \right] \]

- In SM enormous corrections to \(m_h \): \(\Delta m^2 \propto \Lambda_{\text{UV}}^2 \) from top quark.
- In SUSY Stop loop cancels \(\Lambda_{\text{UV}}^2 \) term, and give a finite correction.
- Light stops (~TeV) needed for “natural” (not fine-tuned) solution to hierarchy problem.
Stop mixing

Tree level contribution

\[m_h^2 \sim m_Z^2 \cos^2(2\beta) + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left(\frac{\bar{X}_t}{2} + \log \frac{M^2_{\text{Susy}}}{m_t^2} \right) \]

Stop loop contributions

Valid in the approximation \(m_{\tilde{q}_3} \sim m_{\tilde{u}_3} \)

They have to lift the mass of the Higgs by \(\sim 35 \text{ GeV}! \)

- Obtain mass matrix eigenstates \(\tilde{t}_1 \) and \(\tilde{t}_2 \)

\[
\begin{pmatrix}
\tilde{t}_1 \\
\tilde{t}_2
\end{pmatrix} = U_t
\begin{pmatrix}
\tilde{t}_L \\
\tilde{t}_R
\end{pmatrix} =
\begin{pmatrix}
\cos \theta_t & \sin \theta_t e^{-i\phi_t} \\
-\sin \theta_t e^{i\phi_t} & \cos \theta_t
\end{pmatrix}
\begin{pmatrix}
\tilde{t}_L \\
\tilde{t}_R
\end{pmatrix}
\]

- For \(m_h \approx 125 \text{ GeV} \) requires:
 - Small mixing \(\rightarrow \) both stops in the multi-TeV scale
 - OR
 - Large mixing \(\rightarrow \) two stops close in mass, in the several hundred GeV scale.
 - \(\rightarrow \) very large splitting between the two stops: one is very light (100-200 GeV)

\[\bar{X}_t = \frac{2X_t^2}{M^2_{\text{Susy}}} \left(1 - \frac{X_t^2}{12M^2_{\text{Susy}}} \right) \]

\[X_t = A_t - \frac{\mu}{\tan \beta} \]

\[M^2_{\text{stop}} = \begin{pmatrix} m_{Q_3}^2 + m_t^2 + D_L & m_t X_t \\
m_t X_t & m_{\tilde{u}_3}^2 + m_t^2 + D_R \end{pmatrix} \]
Stop decay

Stop decay \leftrightarrow Stop mixing & neutralino/chargino composition

<table>
<thead>
<tr>
<th>LSP</th>
<th>Allowed stop decays</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\chi}^0_1 = \tilde{B}_3$</td>
<td>$\tilde{t}_L \rightarrow t_L \tilde{\chi}^0_1$, $\tilde{t}_R \rightarrow t_R \tilde{\chi}^0_1$</td>
<td>U(1) couples L to L and R to R</td>
</tr>
<tr>
<td>$\tilde{\chi}^0_1 = \tilde{W}_3$</td>
<td>$\tilde{t}_L \rightarrow t_L \tilde{\chi}^0_1$</td>
<td>SU(2) only acts on L</td>
</tr>
<tr>
<td>$\tilde{\chi}^0_1 = \tilde{H}^0_d$</td>
<td>none</td>
<td>Only couples to down-type</td>
</tr>
<tr>
<td>$\tilde{\chi}^0_1 = \tilde{H}^0_u$</td>
<td>$\tilde{t}_L \rightarrow t_R \tilde{\chi}^0_1$, $\tilde{t}_R \rightarrow t_L \tilde{\chi}^0_1$</td>
<td>Higgs couple L to R (mass term)</td>
</tr>
</tbody>
</table>

(From Claudio Campagnari’s talk)

Composition of $\tilde{\chi}^0_1$ in our light slepton case

- 28% Higgsino
- 72% Bino

Classic scenario $\tilde{\chi}^0_1 \sim \tilde{B}$, $\tilde{\chi}^0_2 \sim \tilde{W}$; $\tilde{t}_L \sim \tilde{t}_R$

$\tilde{t}_1 \rightarrow \tilde{\chi}^0_1 + t$ (100%)

Our scenario $\tilde{\chi}^0_1 \sim (\tilde{B} + \tilde{H})$, $\tilde{\chi}^0_{2,3} \sim \tilde{H}$; $\tilde{t}_L \sim \tilde{t}_R$

$\tilde{t}_1 \rightarrow \tilde{\chi}^0_{3,2} + t$ (39%); $\tilde{\chi}^0_{3,2} \rightarrow \tilde{\chi}^0_1 + l^+ + l^-$ (via \tilde{t} or Z)
Light slepton case

\[\tilde{\chi}_{2,3}^0 \sim \tilde{H} \text{ almost degenerate.} \]

\[\bar{t} \rightarrow \tilde{\chi}_{3,2}^0 + t \text{ (39\%)} \]

\[\tilde{\chi}_{3,2}^0 \rightarrow \tilde{\chi}_1^0 + l^+ + l^\mp \text{ (100\%, via } \tilde{e}^\pm \text{ or } \tilde{\mu}^\pm) \]

\[M_{\text{edge}}^\text{edge} \sim \Delta M = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} \]
Dilepton mass distribution

Final State:
2 l + 2 j + 1 b + large MET
MET > 150 GeV
H_T > 100 GeV

30 fb^{-1} luminosity, 8 TeV

Dominant SM BG: \(\bar{t}t + \text{jets} \)

BG data simulation:
MadGraph + PYTHIA + PGS4

Signal data simulation:
ISAJET + PYTHIA + PGS4

OSSF \((e^\pm e^\mp + \mu^\pm \mu^\mp) \)
\(\bar{t}t^* \) and \(\bar{t}t + (0-4) \) jets

OSDF \((e^\pm \mu^\mp + \mu^\pm e^\mp) \)
\(\bar{t}t^* \) and \(\bar{t}t + (0-4) \) jets

OSSF – OSDF

\[\Delta M = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 63 \text{ GeV} \]
Dilepton mass distribution

The edge shifts with \(\Delta M = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} \)

30 fb\(^{-1}\) luminosity, 8 TeV

\(\tilde{\chi}^0_{3,2} \rightarrow \tilde{\chi}^0_1 + l^\pm + l^{\mp} \) (100\%, via \(\tilde{e}^\pm \) or \(\tilde{\mu}^\pm \))
Significance

30 fb⁻¹ luminosity, 8 TeV

\[s = \frac{N_S}{\sqrt{N_S + N_B}} \]

<table>
<thead>
<tr>
<th>(m_\tilde{t}) (GeV)</th>
<th>Signal, (N_S)</th>
<th>Background, (N_B)</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>212</td>
<td>1392</td>
<td>5.3</td>
</tr>
<tr>
<td>440</td>
<td>180</td>
<td>1368</td>
<td>4.6</td>
</tr>
<tr>
<td>500</td>
<td>117</td>
<td>1354</td>
<td>3.1</td>
</tr>
<tr>
<td>550</td>
<td>78</td>
<td>1348</td>
<td>2.1</td>
</tr>
<tr>
<td>600</td>
<td>51</td>
<td>1345</td>
<td>1.4</td>
</tr>
</tbody>
</table>

\(\Delta M = 63 \)

\(20 \text{ GeV} < M_{ll} < 70 \text{ GeV} \)

distinguishable edge, for \(m_\tilde{t} \leq 550 \text{ GeV} \).

significance \(\sim 3\sigma \), for \(m_\tilde{t} = 500 \text{ GeV} \).
Heavy slepton case

\[\tilde{q}, \tilde{g} \rightarrow t \rightarrow \tilde{\chi}_{3,2}^0 + t (31\%) \]
\[\tilde{\chi}_{3,2}^0 \rightarrow \tilde{\chi}_1^0 + l^\pm + l^\mp (7\%, \text{via Z boson}) \]

30 fb\(^{-1}\) luminosity, 8 TeV

\[s = \frac{N_S}{\sqrt{N_S + N_B}} \]

20 GeV < \(M_{ll}\) < 70 GeV

<table>
<thead>
<tr>
<th>(m_{\tilde{t}}) (GeV)</th>
<th>Signal (N_S)</th>
<th>Background (N_B)</th>
<th>significance (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>393</td>
<td>22</td>
<td>395</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Small value of \(Z \rightarrow ll\) branch ratio causes smaller significance.
(\(\tilde{B} + \tilde{H}\)) Dark Matter

\[
\begin{align*}
\tilde{m}_{\tilde{\chi}_1^0} &= 113 \text{ GeV} \\
\Delta M &= m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Masses</th>
<th>(\tilde{B})</th>
<th>(\tilde{H})</th>
<th>(\Omega h^2)</th>
<th>s</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GeV)</td>
<td>(%)</td>
<td>(%)</td>
<td>(30 fb(^{-1}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta M=160)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mainly Bino DM</td>
</tr>
<tr>
<td>(m_l=123)</td>
<td>96</td>
<td>4</td>
<td>0.11</td>
<td>0.44</td>
<td>(Coannihilation)</td>
</tr>
<tr>
<td>(m_l=500)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta M=63)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bino-Higgsino DM</td>
</tr>
<tr>
<td>(m_l=144)</td>
<td>72</td>
<td>28</td>
<td>0.11</td>
<td>3.1</td>
<td>(Light slepton scenario)</td>
</tr>
<tr>
<td>(m_l=500)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta M=62)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bino-Higgsino DM</td>
</tr>
<tr>
<td>(m_l=4000)</td>
<td>67</td>
<td>33</td>
<td>0.11</td>
<td>1.1</td>
<td>(Heavy slepton scenario)</td>
</tr>
<tr>
<td>(m_l=390)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) \(\tilde{\chi}_1^0 \sim \tilde{B}\), need \(\tilde{\chi}_1^0 - \tilde{l}\) coannihilation. a low \(p_T\) lepton \(\rightarrow\) small significance.

(b) \(\tilde{\chi}_1^0 \sim (\tilde{B} + \tilde{H})\) and light \(\tilde{l}\), \(\rightarrow\) edge around \(\Delta M\).

(c) \(\tilde{\chi}_1^0 \sim (\tilde{B} + \tilde{H})\) and heavy \(\tilde{l}\), \(Z \rightarrow ll\) \(\rightarrow\) small significance.
OUTLINE

Supersymmetry dark matter (DM)
- Relic density & DM composition
- LHC search status

DM search using Stop decay
- Stop decay & DM composition
- Light slepton case
- Heavy slepton case

DM search using Vector Boson Fusing (VBF) processes
- VBF signature
- Search strategy
- Results

Conclusion
VBF DM search

Cross section \(\sim \frac{m}{\tilde{\chi}_1^0} \) & composition of \(\tilde{\chi}_1^0 \) and \(\tilde{\chi}_1^\pm \).

Depending on whether \(\tilde{\chi}_1^0 \) is Bino, Wino, Higgsino (and \(\tilde{\chi}_1^\pm \) Wino/Higgsino), or mixture, it will enhance/suppress these diagrams to dominate the cross-section.

For example, \(\tilde{\chi}_1^0 = \text{Wino}, \tilde{\chi}_1^\pm = \text{Wino} \rightarrow WW \) diagrams dominate

W luminosity is largest \(\rightarrow \) expect Wino + Wino case to give us largest x-section
VBF signature

Advantages of VBF DM search:
(a) VBF tagging jets
(b) Broad enhancements in MET
(c) Compressed scenarios
(d) Free from trigger bias
(e) Direct probing EW sector, complementary
 ← agnostic about colored sector

VBF tagged jets (2 energetic jets: large m_{jj}, forward region, opposite hemispheres)

VBF DM production topology
Transverse plane
Search strategy

\[pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 jj, \ 2j + E_T \]

BG:
1. \(Zjj \rightarrow \nu \nu jj \): irreducible, mimic topology
2. \(Wjj \rightarrow l \nu jj \): veto leptons
3. \(t \bar{t} + jets \): veto b jet, leptons, veto central jets

Pre-selection:
(a) MET > 50 GeV
(b) \(p_T (j_1, j_2) > 30 \) GeV
(c) \(|\Delta \eta(j_1, j_2)| < 4.2, \ \eta_1 \eta_2 < 0 \)

Final selection:
(d) \(p_T (j_1, j_2) > 50 \) GeV
(e) \(m(j_1, j_2) > 1500 \) GeV
(f) veto leptons (e, mu, tau)
(g) veto b jets (70% efficiency, 1.5% fake rate)
(h) veto central jet with \(p_T > 50 \) GeV
(i) MET > 200 GeV (450 GeV) for \(m_{\tilde{\chi}_1^0} = 100 \) GeV (1 TeV)

Data simulation: MadGraph + PYTHIA + PGS4
VBF production cross section

\[\tilde{\chi}_1^0 \sim \tilde{W} \text{ or } \tilde{H} : \text{pp} \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 jj, \tilde{\chi}_1^- \tilde{\chi}_1^+ jj, \tilde{\chi}_1^+ \tilde{\chi}_1^- jj, \tilde{\chi}_1^0 \tilde{\chi}_1^0 jj \text{ (inclusive), since } m_{\tilde{\chi}_1^0} < m_{\tilde{\chi}_1^0} \]

\[\tilde{\chi}_1^0 \sim (\tilde{B} + \tilde{H}) : \text{pp} \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 jj \]

After \(|\Delta \eta(j_1, j_2)| > 4.2 \)
Invariant mass distribution of VBF tagged jets

After pre-selection cuts & $p_T(j_1, 2) > 50$ GeV
MET distribution

After all selection cuts, except E_T cut.
Significance curve

\[\frac{S}{\sqrt{S+B}} \]

- 99% Wino, 1000 fb^{-1}, 14 TeV
- 99% Wino, 500 fb^{-1}, 14 TeV
- 99% Wino, 100 fb^{-1}, 14 TeV

\[m(\tilde{\chi}_1^0) \text{ [GeV]} \]
DM mass & relic density

VBF cross section, MET shape → neutralino1 mass, composition → DM relic density

benchmark: $m_{\tilde{\chi}_1} = 100 \text{ GeV}$
Conclusion

DM using \tilde{t} decay: $(\tilde{B} + \tilde{H})$
- $2l$ (OSSF) + $2j + 1b + \not{E}_T$
- Two Cases:
 - Light \tilde{t}: Sensitivity up to 600 GeV \tilde{t} @ 30 fb$^{-1}$, 8 TeV.
 - Heavy \tilde{t}: Small significance.
- Relic density

DM using VBF: $\tilde{W}, \tilde{H}, (\tilde{B} + \tilde{H})$
- $2j + \not{E}_T$
- Signature
 - VBF tagging jets (large m_{jj}, big rapidity gap)
 - Broad enhancements in MET
- Expected reach
 - For \tilde{W}, 600 GeV 5σ reach @ 1000 fb$^{-1}$, 14 TeV.
 - Relic density uncertainty: 20% (40%) for 100 GeV \tilde{W} (\tilde{H}) @ 500 fb$^{-1}$, 14 TeV.

Further work:
- \tilde{t} decay @14 TeV
 - Heavier stop: small cross section, threshold (jet, lepton), pile up \leftrightarrow large luminosity
 - \rightarrow neutralino mass and composition \rightarrow DM relic density
- VBF DM
 - Optimization, other kinematic distributions \rightarrow best significance
Backup Slide

Status of Stop searches

ATLAS

CMS

\[\widetilde{t} \rightarrow c \ell^+ / \ell^- \rightarrow W b \tilde{\chi}^0_1 \]