These are your formula sheets

DO NOT TURN IT IN!

Derivatives:

\[\frac{d}{dx} ax^n = an x^{n-1} \]
\[\frac{d}{dx} \sin ax = a \cos ax \]
\[\frac{d}{dx} \cos ax = -a \sin ax \]
\[\frac{d}{dx} e^{ax} = ae^{ax} \]
\[\frac{d}{dx} \ln ax = \frac{1}{x} \]

Integrals:

\[\int a x^n \, dx = \frac{a}{n+1} x^{n+1} \]
\[\int \frac{dx}{x} = \ln x \]
\[\int \sin ax \, dx = -\frac{1}{a} \cos ax \]
\[\int \cos ax \, dx = \frac{1}{a} \sin ax \]
\[\int e^{ax} \, dx = \frac{1}{a} e^{ax} \]
\[\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} \]
\[\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left(\sqrt{x^2 + a^2} + x \right) \]
\[\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} \]
\[\int \frac{x \, dx}{(x^2 + a^2)^{3/2}} = -\frac{1}{\sqrt{x^2 + a^2}} \]

Constants:

\[\epsilon_0 = 8.8542 \times 10^{-12} \text{ C}^2/(\text{N m}^2) \]
\[\mu_0 = 4\pi \times 10^{-7} \text{ Wb}/(\text{A m}) \]
\[c = 2.9979 \times 10^8 \text{ m/s} \]

DO NOT TURN THESE SHEETS IN!
Electromagnetic waves:
Maxwell’s equations predict the existence of electromagnetic waves that propagate in vacuum with the electric and magnetic fields perpendicular and with ratio:

\[E = cB \]

The waves travel with velocity \(c \) where

\[c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \]

Energy in Electromagnetic waves:
The energy flow rate (power per unit area) of an electromagnetic wave is given by the Poynting vector \(\vec{S} \)

\[\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \]

The magnitude of the time-averaged value of \(\vec{S} \) is called the intensity of the wave

\[I = \frac{1}{2} \frac{E_{\text{max}} B_{\text{max}}}{\mu_0} = \frac{E_{\text{max}}^2}{2 \mu_0 c} = \frac{1}{2} \epsilon_0 c E_{\text{max}}^2 \]

Speed of light in materials
When light propagates through a material, its speed is lower than the speed in free space space by a factor called the index of refraction

\[v = \frac{c}{n} \]

Reflection and refraction
At a smooth interface, the incident, reflected, and refracted rays and the normal to the interface all lie in a single plane. The angle of incidence and angle of reflection (measured from the normal) are equal \(\theta_i = \theta_r \) and the angle of refraction is given by Snell’s law:

\[n_a \sin \theta_a = n_b \sin \theta_b \]

Polarization
A polarizing filter passes waves that are linearly polarized along its polarizing axis. When polarized light of intensity \(I_{\text{max}} \) is incident on a polarizing filter used as an analyzer, the intensity \(I \) of the light transmitted depends on the angle \(\phi \) between the polarization direction of the incident light and the polarizing axis of the analyzer:

\[I = I_{\text{max}} \cos^2 \phi \]

Spherical Mirrors
Object and image distances:

\[\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \]

where \(f = R/2 \).

Thin Lenses
Object and image distances:

\[\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \]

where

\[\frac{1}{f} = (n - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \]

Magnification
The lateral magnification for the systems described above is

\[m = \frac{y'}{y} = -\frac{s'}{s} \]
Physics 208 — Formula Sheet for Exam 3
Do NOT turn in these formula sheets!

Forces:
The force on a charge q moving with velocity \vec{v} in a magnetic field \vec{B} is
\[
\vec{F} = q\vec{v} \times \vec{B}
\]
and the force on a differential segment $d\vec{l}$ carrying current I is
\[
d\vec{F} = I d\vec{l} \times \vec{B}
\]

Magnetic Flux:
Magnetic flux is defined analogously to electric flux (see formula sheet 1)
\[
\Phi_B = \int \vec{B} \cdot d\vec{A}
\]
The magnetic flux through a closed surface seems to be zero
\[
\oint \vec{B} \cdot d\vec{A} = 0
\]

Magnetic dipoles:
A current loop creates a magnetic dipole $\vec{\mu} = I\vec{A}$ where I is the current in the loop and \vec{A} is a vector normal to the plane of the loop and equal to the area of the loop. The torque on a magnetic dipole in a magnetic field is
\[
\vec{\tau} = \vec{\mu} \times \vec{B}
\]

Biot-Savart Law:
The magnetic field $d\vec{B}$ produced at point P by a differential segment $d\vec{l}'$ carrying current I is
\[
d\vec{B} = \frac{\mu_0 I d\vec{l}' \times \hat{r}}{4\pi r^2}
\]
where \hat{r} points from the segment $d\vec{l}'$ to the point P.

Magnetic field produced by a moving charge:
Similarly, the magnetic field produced at a point P by a moving charge is
\[
\vec{B} = \frac{\mu_0 q \vec{v} \times \hat{r}}{4\pi r^2}
\]

Ampère’s Law: (without displacement current)
\[
\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{encl}
\]

Faraday’s Law:
The EMF produced in a closed loop depends on the change of the magnetic flux through the loop
\[
\mathcal{E} = -\frac{d\Phi_B}{dt}
\]

When an EMF is produced by a changing magnetic flux there is an induced, nonconservative, electric field \vec{E} such that
\[
\oint \vec{E} \cdot d\vec{l}' = -\frac{d}{dt} \int_A \vec{B} \cdot d\vec{A}
\]

Mutual Inductance:
When a changing current i_1 in circuit 1 causes a changing magnetic flux in circuit 2, and vice-versa, the induced EMF in the circuits is
\[
\mathcal{E}_2 = -M \frac{di_1}{dt} \quad \text{and} \quad \mathcal{E}_1 = -M \frac{di_2}{dt}
\]
where M is the mutual inductance of the two loops
\[
M = \frac{N_2 \Phi_{B2}}{i_1} = \frac{N_1 \Phi_{B1}}{i_1}
\]
where N_i is the number of loops in circuit i.

Self Inductance:
A changing current i in any circuit generates a changing magnetic field that induces an EMF in the circuit:
\[
\mathcal{E} = -L \frac{di}{dt}
\]
where L is the self inductance of the circuit
\[
L = \frac{N \Phi_B}{i}
\]

For example, for a solenoid of N turns, length l, area A, Ampère’s law gives $B = \mu_0 (N/l)i$, so the flux is $\Phi_B = \mu_0 (N/l)iA$, and so
\[
L = \mu_0 \frac{N^2}{l} A
\]

LR Circuits:
When an inductor L and a resistance R appear in a simple circuit, exponential energizing and de-energizing time dependences are found that are analogous to those found for RC-circuits. The time constant τ for energizing an LR circuit is
\[
\tau = \frac{L}{R}
\]

LC Circuits:
When an inductor L and a capacitor C appear in a simple circuit, sinusoidal current oscillation is found with frequency f such that
\[
2\pi f = \frac{1}{\sqrt{LC}}
\]
Capacitance:
A capacitor is any pair of conductors separated by an insulating material. When the conductors have equal and opposite charges Q and the potential difference between the two conductors is V_{ab}, then the definition of the capacitance of the two conductors is

$$C = \frac{Q}{V_{ab}}$$

The energy stored in the electric field is

$$U = \frac{1}{2}CV^2$$

If the capacitor is made from parallel plates of area A separated by a distance d, where the size of the plates is much greater than d, then the capacitance is given by

$$C = \varepsilon_0 A/d$$

Capacitors in series:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots$$

Capacitors in parallel:

$$C_{eq} = C_1 + C_2 + \ldots$$

If a dielectric material is inserted, then the capacitance increases by a factor of K where K is the dielectric constant of the material

$$C = KC_0$$

Current:
When current flows in a conductor, we define the current as the rate at which charge passes:

$$I = \frac{dQ}{dt}$$

We define the current density as the current per unit area, and can relate it to the drift velocity of charge carriers by

$$\vec{j} = nq\vec{v}_d$$

where n is the number density of charges and q is the charge of one charge carrier.

Ohm’s Law and Resistance:
Ohm’s Law states that a current density J in a material is proportional to the electric field E. The ratio $\rho = E/J$ is called the resistivity of the material. For a conductor with cylindrical cross section, with area A and length L, the resistance R of the conductor is

$$R = \frac{\rho L}{A}$$

A current I flowing through the resistor R produces a potential difference V given by

$$V = IR$$

Resistors in series:

$$R_{eq} = R_1 + R_2 + \ldots$$

Resistors in parallel:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots$$

Power:
The power transferred to a component in a circuit by a current I is

$$P = VI$$

where V is the potential difference across the component.

Kirchhoff’s rules:
The algebraic sum of the currents into any junction must be zero:

$$\sum I = 0$$

The algebraic sum of the potential differences around any loop must be zero.

$$\sum V = 0$$

RC Circuits:
When a capacitor C is charged by a battery with EMF given by \mathcal{E} in series with a resistor R, the charge on the capacitor is

$$q(t) = C\mathcal{E} \left(1 - e^{-t/RC}\right)$$

where $t = 0$ is when the charging starts.

When a capacitor C that is initially charged with charge Q_0 discharges through a resistor R, the charge on the capacitor is

$$q(t) = Q_0e^{-t/RC}$$

where $t = 0$ is when the discharging starts.
Physics 208 — Formula Sheet for Exam 1

Do NOT turn in these formula sheets!

Force on a charge:
An electric field \(\vec{E} \) exerts a force \(\vec{F} \) on a charge \(q \) given by:

\[
\vec{F} = q \vec{E}
\]

Coulomb’s law:
A point charge \(q \) located at the coordinate origin gives rise to an electric field \(\vec{E} \) given by

\[
\vec{E} = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}
\]

where \(r \) is the distance from the origin (spherical coordinate), \(\hat{r} \) is the spherical unit vector, and \(\epsilon_0 \) is the permittivity of free space:

\[
\epsilon_0 = 8.8542 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)
\]

Superposition:
The principle of superposition of electric fields states that the electric field \(\vec{E} \) of any combination of charges is the vector sum of the fields caused by the individual charges

\[
\vec{E} = \sum_i \vec{E}_i
\]

To calculate the electric field caused by a continuous distribution of charge, divide the distribution into small elements and integrate all these elements:

\[
\vec{E} = \int d\vec{E} = \int \frac{dq}{4\pi\epsilon_0 r^2} \hat{r}
\]

Electric flux:
Electric flux is a measure of the “flow” of electric field through a surface. It is equal to the product of the area element and the perpendicular component of \(\vec{E} \) integrated over a surface:

\[
\Phi_E = \int E \cos \phi \, dA = \int \vec{E} \cdot \hat{n} \, dA = \int \vec{E} \cdot d\vec{A}
\]

where \(\phi \) is the angle from the electric field \(\vec{E} \) to the surface normal \(\hat{n} \).

Gauss’ Law:
Gauss’ law states that the total electric flux through any closed surface is determined by the charge enclosed by that surface:

\[
\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0}
\]

Electric conductors:
The electric field inside a conductor is zero. All excess charge on a conductor resides on the surface of that conductor.

Electric Potential:
The electric potential is defined as the potential energy per unit charge. If the electric potential at some point is \(V \) then the electric potential energy at that point is \(U = qV \). The electric potential function \(V(\vec{r}) \) is given by the line integral:

\[
V(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{E} \cdot d\vec{l} + V(\vec{r}_0)
\]

Beware of the minus sign. This gives the potential produced by a point charge \(q \):

\[
V = \frac{q}{4\pi\epsilon_0 r}
\]

for a collection of charges \(q_i \)

\[
V = \sum_i \frac{q_i}{4\pi\epsilon_0 r_i}
\]

and for a continuous distribution of charge

\[
V = \int \frac{dq}{4\pi\epsilon_0 r}
\]

where in each of these cases, the potential is taken to be zero infinitely far from the charges.

Field from potential:
If the electric potential function is known, the vector electric field can be derived from it:

\[
E_x = -\frac{\partial V}{\partial x} \quad E_y = -\frac{\partial V}{\partial y} \quad E_z = -\frac{\partial V}{\partial z}
\]

or in vector form:

\[
\vec{E} = -\left(\frac{\partial V}{\partial x} \hat{i} + \frac{\partial V}{\partial y} \hat{j} + \frac{\partial V}{\partial z} \hat{k} \right)
\]

Beware of the minus sign.