HW 12.1. A small perturbation λx^4 is added to the Hamiltonian for the harmonic oscillator. (This represents the anharmonic effects in a real system.)

(a) Calculate the first-order correction to the energy eigenvalues, ΔE_n.

Give your answer in terms of n, λ, \hbar, the mass m, and the force constant k.

HW 12.2. For the same problem as above, calculate the leading correction to the ground-state wavefunction.

This involves calculating the matrix element $\langle m|\lambda x^4|0\rangle$ for the lowest intermediate state m which gives a nonvanishing correction in lowest-order perturbation theory.

Give your answer as a coefficient (involving the same parameters as in problem 1 above) times the unperturbed wavefunction $\psi_m(x)$, which is mixed into $\psi_0(x)$ by the perturbation (with m specified, of course). You do not need to normalize the corrected wavefunction to one.

HW 12.3. A hydrogen atom is placed in a uniform static electric field ε that points along the z axis. The (relatively small) perturbation in the Hamiltonian is $-e\varepsilon z$, where e is the fundamental charge. It removes the degeneracy of some of the states, and this phenomenon is called the Stark effect.

Using degenerate perturbation theory, calculate the lowest-order shifts in energy for the four $n = 2$ states in hydrogen. Give the answer in terms of e, ε, and the Bohr radius a_0.

You may use the fact that $\langle 2, \ell = 0, m = 0|z|2, \ell = 1, m = 0\rangle = -3a_0$.