HW 10.1. In the first Born approximation, calculate the differential cross section \(\frac{d\sigma}{d\Omega} \) for the Gaussian potential

\[
V(r) = V_0 e^{-r^2/a^2}.
\]

Give your answer in terms of the momentum transfer \(q \) and the various constants.

HW 10.2. (a) Again in the first Born approximation, calculate the differential cross section \(\frac{d\sigma}{d\Omega} \) for the potential

\[
V(r) = V_0, \quad r \leq R
\]

\[
= 0, \quad r > R.
\]

(b) Show that \(\frac{d\sigma}{d\Omega} \) is a constant (independent of both \(k \) and \(\theta \)) in the limit of low momentum transfer \(q \).

(c) Now consider the 3-dimensional delta-function potential

\[V(r) = A \delta(r). \]

Using the first Born approximation once more, calculate \(\frac{d\sigma}{d\Omega} \). Determine the constant \(A \) which gives the same result as was found in part (b).