3. This problem involves a quantum ideal gas of fermions, for which \(a = 1 \) below, or bosons, for which \(a = -1 \).

You are given the following:

\[
\frac{PV}{kT} = \frac{1}{a} \sum_k \ln \left(1 + a e^{-\left(\varepsilon_k - \mu\right)/kT} \right)
\]

\[
\langle n(\varepsilon_k) \rangle = \frac{1}{e^{\left(\varepsilon_k - \mu\right)/kT} + a}
\]

where \(\langle n(\varepsilon_k) \rangle \) is the average number of particles in the single-particle state with energy \(\varepsilon_k \).

(a) (4) Demonstrate that the above equations lead to the equation of state for a classical ideal gas in the limit \(a \to 0 \). (As always, show each significant step.)

In the remainder of the problem, return to a (spinless) quantum ideal gas, and assume that the single-particle energy is a function of only the magnitude \(p \) of the momentum: \(\varepsilon = \varepsilon(p) \).

(b) (4) Convert the sum above to an integral of the form \(\int_0^\infty f(p)dp \) by using the density of states \(\rho(p) \) in momentum space, which is obtained as usual from \(\rho(p)dp = \frac{4\pi p^2dp}{h^3/V} \).

(c) (4) Now perform an integration by parts to express the pressure \(P \) as an integral involving \(\langle n(p) \rangle \equiv \langle n(\varepsilon(p)) \rangle \) and the particle velocity \(u(p) = \frac{d\varepsilon(p)}{dp} \), as well as \(p \) and constants.

(d) (4) Write the number of particles \(N \) as an integral over \(p \) with a similar form.

(e) (4) Use your results of parts (c) and (d) to show that

\[
P = \text{constant} \times n \langle pu \rangle \quad n \equiv \frac{N}{V}
\]

while at the same time determining the constant.

(f) (4) For particles with a dispersion relation \(\varepsilon(p) = ap^s \), where \(a \) is a constant, obtain the relation between \(P \) and the energy density \(E/V \).

(g) (4) Apply the result of part (f) to the cases of (i) nonrelativistic particles and (ii) ultrarelativistic particles. I.e., obtain the relation between the pressure \(P \) and the energy density \(E/V \) in each case.
4. Let $\Phi(V)$ be the static energy of a solid with volume V, approximately given by

$$\Phi(V) = \frac{(V - V_0)^2}{2\kappa_0 V_0}$$

where V_0 and κ_0 are constants, with $\kappa_0 C_V T \ll V_0$. Then the total energy (in the harmonic approximation) is

$$U(T) = \Phi(V) + E_{vib}(T)$$

where $E_{vib}(T)$ is the energy of the vibrational modes with (angular) frequencies ω_i.

Assume that each mode has the same value for the Grüneisen constant γ:

$$-\frac{\partial \ln \omega_i}{\partial \ln V} = \gamma.$$

(a) (4) Calculate the canonical partition function $Z_{vib}(T)$ as a product over the modes i (with each mode treated as a harmonic oscillator). Recall that this means summing over all the possible quantum numbers n_i for each mode.

(b) (4) From the result of part (a), calculate the Helmholtz free energy $F_{vib}(T)$ (again as a summation over i).

(c) (4) Now switch to the equivalent description involving the Bose-Einstein distribution function $\langle n_i \rangle$ for the phonons in each mode, and obtain $E_{vib}(T)$ as a summation over the modes i.

(d) (4) Show that this same expression for $E_{vib}(T)$ results when one calculates it from the result for $Z_{vib}(T)$ in part (a).

(e) (4) From the result of part (c) or (d), calculate C_V (again as a summation over i).

(f) (4) Show that the pressure is given by

$$P = -\frac{\partial \Phi(V)}{\partial V} + \gamma \frac{E_{vib}(T)}{V}.$$

(g) (4) Show that the coefficient of thermal expansion at constant pressure, defined by

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{N,P}$$

and with $P \approx 0$, $V \approx V_0$, is approximately given by

$$\alpha = \gamma \frac{\kappa_0}{V_0} C_V.$$

(h) (4) Starting with the well-known relation (which we derived in the first week of class)

$$C_P - C_V \approx TV \frac{\alpha^2}{\kappa_T},$$

where the isothermal compressibility is defined by

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{N,T},$$

show that $\kappa_T \approx \kappa_0$, and then obtain $C_P - C_V$ in terms of γ, κ_0, C_V, V_0, and T.