1. Atomic transitions due to time-dependent electric field.

Consider a hydrogen atom which is in its ground state for \(t < 0 \). For \(t > 0 \) it is subjected to a spatially uniform electric field
\[
E_0 e^{-t/\tau}
\]
which is directed along the \(z \) axis. Using first-order time-dependent perturbation theory, let us calculate the probability of finding the atom in the excited state with \(n = 2, \ell = 1, m = 0 \) after a time \(t \) has elapsed.

First, however, let us obtain the expression which gives the probability. The eigenstates of the unperturbed Hamiltonian are \(\ket{n} : H_0 \ket{n} = \epsilon_n \ket{n} \). The full Hamiltonian in the original Schrödinger picture is
\[
H = H_0 + V_t,
\]
but recall that the time dependence of the state \(\ket{\psi(t)} \) in the interaction picture arises only from
\[
V(t) \equiv e^{iH_0 t/\hbar} V_t e^{-iH_0 t/\hbar}.
\]
\[
i \hbar \frac{d}{dt} \ket{\psi(t)} = V(t) \ket{\psi(t)}.
\]

(a) (3) Show that the solution of this equation to first order is
\[
\ket{\psi(t)} = \ket{\psi(t_0)} + \frac{1}{i \hbar} \int_{t_0}^{t} dt' V(t') \ket{\psi(t_0)}.
\]

(b) (3) If the system is in an initial state \(\ket{i} \) at time \(t_0 = 0 \), show that the probability that it is in a different state \(\ket{n} \) at time \(t \) is
\[
P_{i \rightarrow n}(t) = \left| \frac{1}{i \hbar} \int_{t_0}^{t} dt' e^{i(\epsilon_n - \epsilon_i)t'/\hbar} \langle n|V_t|i \rangle \right|^2.
\]

(c) (3) Write down the perturbing Hamiltonian \(V_t \) for the electron in a hydrogen atom subjected to an electric field with \(E_z = E_0 e^{-t/\tau} \) and \(E_x = E_y = 0 \). Recall that force = charge × electric field and that \(z = r \cos \theta \).

(d) (15) Calculate the matrix element \(\langle n|V_t|i \rangle \) for \(\ket{i} = \ket{100} \) and \(\ket{n} = \ket{210} \), with the states labeled as usual by the quantum numbers \(\ket{n \ell m} \). The wavefunctions are given by
\[
R_{10} = \frac{2}{a_0^{3/2}} e^{-r/a_0} \quad , \quad Y_{oo} = \frac{1}{\sqrt{4\pi}} \quad , \quad R_{21} = \frac{1}{(2a_0)^{3/2}} \frac{r}{a_0} e^{-r/2a_0} \quad , \quad Y_{10} = \frac{\sqrt{3}}{\sqrt{4\pi}} \cos \theta.
\]

Note: One way to evaluate an integral of the form \(\int du \; u^N \; e^{au} \) is to rewrite it as \(\frac{d^N}{da^N} \int du \; e^{au} \) and take the derivative after evaluating \(\int du \; e^{au} \). (Another way is to repeatedly integrate by parts.)
(e) (8) Calculate the probability $P_{100 \rightarrow 210}(t)$ that an electron initially in the ground state $|100\rangle$ will be found in the excited state $|210\rangle$ after a time t has elapsed. Give your answer in terms of t, τ, E_o, e, h, and

$$\omega \equiv \frac{E_2 - E_1}{h}.$$

(f) (3) Calculate the probability after a long time has elapsed, $P_{100 \rightarrow 210}(t \rightarrow \infty)$.
2. (20) **Field emission of electrons from a metal.**

In this problem we have a time-*independent* electric field which we can treat using the WKB approximation, in which the transmission probability is given by:

\[T = e^{-2 \int_a^b \kappa(x') \, dx'} \]

where \(a \) and \(b \) are the classical turning points and

\[\kappa(x) = \frac{1}{\hbar} \sqrt{2m(V(x) - E)} \]

Let us adopt a model in which

\[V(x) = -e \varepsilon_x \quad \text{for} \quad x > 0 \quad (\text{region outside metal}) \]

and

\[V(x) = -V_0 \quad \text{for} \quad x < 0 \quad (\text{region inside metal}) \]

where \(V_0 \) is positive and \(-V_0 < E < 0\).

(This approximates a more realistic picture in which the potential energy inside the metal rises from an average internal value of \(-V_0\) to the vacuum level of 0 over a distance of a few Angstroms, as the surface is approached.)

Assuming that the WKB approximation can be used with \(x = 0 \) as one turning point, calculate the transmission probability \(T \) in terms of the various constants.

[Hint: you may want to define \(\varepsilon_c = \frac{4 \sqrt{2m}}{3 e\hbar} \left| E \right|^{3/2} \).]
3. Electron in magnetic field is (mathematically) equivalent to harmonic oscillator.

Let

$$\Pi_x = p_x - \frac{q}{c} A_x, \quad \Pi_y = p_y - \frac{q}{c} A_y$$

where \(q = -e \) is the charge on an electron, \(p \) is the momentum operator, and the vector potential \(A(r) \) corresponds to a magnetic field in the z direction: \(B = B \hat{z} \).

(a) (10) Evaluate the commutator of these operators in the coordinate representation and show that

$$[\Pi_x, \Pi_y] = iB \times \text{constant}$$

(also determining the constant, of course).

(b) (15) Writing the Hamiltonian for an electron in this magnetic field in terms of \(\Pi_x \) and \(\Pi_y \), and comparing the above commutation relation with the one for a harmonic oscillator, show that the energy eigenvalues can be written as

$$E = \frac{\hbar^2 k^2}{2m} + \text{constant}' \times \left(n + \frac{1}{2} \right)$$

(also determining \(\text{constant}' \) in terms of \(e, B, \hbar, m, \) and \(c \), of course).

You may just quote results for the harmonic oscillator, which has the Hamiltonian

$$H = \frac{1}{2m} p^2 + \frac{1}{2m} (m \omega x)^2$$.
4. **Operator form of Ehrenfest’s theorem.**

Consider the usual 1-dimensional Hamiltonian

\[H = \frac{1}{2m} p^2 + V(x). \]

(a) (5) The operators in the Heisenberg picture are \(x(t) \), \(p(t) \), etc. Starting with the usual commutation relation for the operators \(x \) and \(p \) in the Schrödinger picture, obtain the commutation relation for \(x(t) \) and \(p(t) \).

(b) (5) Using the Taylor series expansion

\[V(x(t)) = \sum_n V_n x(t)^n \]

show that

\[\left[p(t), V(x(t)) \right] = -i\hbar \frac{\partial V(x(t))}{\partial x(t)}. \]

(b) (10) Using the result of part (a) and the Heisenberg equations of motion for \(x(t) \) and \(p(t) \), obtain the operator form of Ehrenfest’s theorem:

\[m \frac{d^2 x(t)}{dt^2} = F(t) \quad , \quad F(t) = -\frac{\partial V(x(t))}{\partial x(t)}. \]