PHYS 607

Syllabus

Instructor: Artem G. Abanov

Web page: http://faculty.physics.tamu.edu/abanov/

email: abanov@tamu.edu

Office: MPHY 415

Office Hours: MWF 9:20-10:20

Office phone: 1-404-981-7799 (via Google voice)

Text: These books are required.

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 exams</td>
<td>60%</td>
</tr>
<tr>
<td>Final (comprehensive)</td>
<td>20%</td>
</tr>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
</tbody>
</table>

Evening exams on Feb 23, Mar 22, and Apr 19; 7:00-9:30 pm; MPHY 213

Final exam May 4, Friday 3:00pm – 5:00pm, MPHY 107

Syllabus:

<table>
<thead>
<tr>
<th>Wk</th>
<th>Date</th>
<th>Topic</th>
<th>Sections in Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 16</td>
<td>No Classes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan. 20</td>
<td>Temperature. Macroscopic motion.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan. 23</td>
<td>Thermodynamic potentials: energy, enthalpy, Helmholtz free energy, and Gibbs free energy. Maxwell relations between thermodynamic derivatives and Jacobians.</td>
<td>LL14,15,16</td>
</tr>
<tr>
<td></td>
<td>Jan. 25</td>
<td>HW 1 given. Relations between thermodynamic coefficients. Equation of state and specific heats. Thermodynamic inequalities.</td>
<td>LL 12-16</td>
</tr>
<tr>
<td></td>
<td>Jan. 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb. 1</td>
<td>HW 2 given. Number of particles as an external parameter. Chemical potential. Solving problems in thermodynamics.</td>
<td>LL 16,21</td>
</tr>
<tr>
<td></td>
<td>Feb. 3</td>
<td>Mixture of gases</td>
<td>LL 93</td>
</tr>
</tbody>
</table>

"Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics."

- From the introduction to States of Matter by David L. Goodstein -
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 10</td>
<td>Entropy. Level spacing of macroscopic system. The law of increase of entropy.</td>
<td>LL 7-8</td>
</tr>
<tr>
<td>Feb. 13</td>
<td>Microcanonical distribution. Canonical (Gibbs) distribution. T-P distribution. Curie's law for independent 1/2 spins in magnetic field.</td>
<td>LL 28, 36, K.1 ex 4,10</td>
</tr>
<tr>
<td>Feb. 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 20</td>
<td>Thermodynamics and Gibbs distribution in the presence of external fields.</td>
<td>LL 25, K.2 pr 3,4</td>
</tr>
<tr>
<td>Feb. 22</td>
<td>HW 5 given. Thermodynamics and Gibbs distribution of rotating bodies. Thermodynamic perturbation theory (classical).</td>
<td>LL 26, 34, 32</td>
</tr>
<tr>
<td>Feb. 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 27</td>
<td>Thermodynamic perturbation theory (quantum). Boltzmann distribution.</td>
<td>LL 32, 37, 38</td>
</tr>
<tr>
<td>Mar. 2</td>
<td>The law of equipartition. Monoatomic gases. Rotation of molecules. Polyatomic gases.</td>
<td>LL 44, 45, 46, 47-51, K.3 ex 2</td>
</tr>
<tr>
<td>Mar. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 21</td>
<td>HW 8 given. Van der Waals equation. Ideal quantum gases. Fermi and Bose statistics. Ideal quantum gases not in equilibrium.</td>
<td>LL 76, 53-55</td>
</tr>
<tr>
<td>Mar. 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 26</td>
<td>Fermi and Bose gases of elementary particles. A degenerate electron gas.</td>
<td>LL 56-57</td>
</tr>
<tr>
<td>Mar. 30</td>
<td></td>
<td>LL 59</td>
</tr>
<tr>
<td>Apr. 2</td>
<td>Magnetism of an electron gas. Pauli paramagnetism. Landau diamagnetism. De Haas-van Alphen effect.</td>
<td>LL 61-62, K.4 ex 3-4</td>
</tr>
<tr>
<td>Apr. 6</td>
<td>No Class</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Assignment/Notes</td>
<td>Reference</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Apr.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.18</td>
<td>HW 12 given. Phase transitions of the second type. Spontaneous symmetry breaking. Order parameter. The discontinuity of specific heat. Effect of an external field on a phase transition.</td>
<td>LL 142-144</td>
</tr>
<tr>
<td>Apr.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.23</td>
<td>Effect of an external field on a phase transition. Fluctuations of the order parameter. Applicability of Landau theory of phase transitions. Levanyuk-Ginzburg criterion.</td>
<td>LL 144-149</td>
</tr>
<tr>
<td>Apr.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Americans with Disabilities Act (ADA) Policy Statement: The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu.

Academic Integrity Statement: “An Aggie does not lie, cheat, or steal or tolerate those who do.” The Honor Council Rules and Procedures may be found on the web at http://www.tamu.edu/aggiehonor.