
EXAM 1. Friday, Oct. 5, 2012

Problem 1. Name. 1pt

Write down your name. Clearly. In block letters!

Problem 2. 1993, Spring, graduate. 33pt.

A particular ideal gas is characterized by the fol-
lowing equations of state:

PV = NkBT and E = cNkBT,

where c is a constant. The gas is used as a medium
in a heat engine/refrigerator whose cycle an be rep-
resented on a P−V diagram as shown in the figure.

a.(11pt.) Determine the change in the internal energy
of the gas for one complete cycle (A→ B →
C → D → A).

b.(11pt.) Determine the equation of the adiabats.

c.(11pt.) Determine the thermodynamic efficiency of
the above heat engine. Express your answer in terms of c, P1, and P2.

Problem 3. N bricks. 33pt.

You have N identical bricks with temperatures Ti, i = 1 . . . N .

a.(13pt.) What is the highest temperature you can give to one of the bricks.

b.(20pt.) If all of the initial temperatures are spread over a small interval of temperatures ∆T such
that the average temperature is T0, and ∆T � T0, find the highest temperature of part
a. for N →∞.

Problem 4. Compressibility. 33pt.

a.(16pt.) Prove the following thermodynamic identity:

κT =
1

n2

(
∂n

∂µ

)
T

where κT is the isothermal compressibility and n = N/V is the particle number density.
Here P denotes the pressure, T the absolute temperature, and µ the chemical potential.

b.(17pt.) Prove the following for a quasistatic adiabatic process

dV

V
= −κT

CV
CP

dP.

Show that for the ideal gas this equation gives PV γ = const., where γ = CP/CV .
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EXAM 2. Friday, Nov. 2, 2012

Problem 1. Name. 1pt

Write down your name. Clearly. In block letters!

Problem 2. Qualifying Exam. 1993 Fall. Undergraduate level. 33pt

Shown in the figure is a set of available single-particle
states and their energies. By properly filling these single-
particle states, find the energies and degeneracies for a
system of four identical non-interacting particles in the
system’s lowest energy level and in its first excited energy
level, assuming that these particles are:

1. identical spinless bosons,

2. identical spinless fermions.

3. At a finite temperature T, calculate the ratio r =
P1/P0, again for the two cases defined above. P1 is
the probability for finding the four-particle system

in the first excited energy level, and P0 is the probability for finding the same system
in the lowest energy level.

Problem 3. Qualifying Exam. 1994 Fall. Graduate level. 33pt

A two dimensional fictitious “polymer” is constructed
as follows: It consists of N identical monomers of length
a each, joined into a chain. (See figure.) Starting from
the left end of the “polymer”, which corresponds to the
coordinates x = 0, y = 0, each new monomer added
prefers to extend the “polymer” to the right (i.e., to
the +x direction) with energy ε = 0, or upward (i.e., to

the +y direction), with energy ε = J > 0. It is given that no monomer added will extend
the polymer to the left or downward.

1. A macro state of this “polymer” is characterized by N and m, where m denotes the
number of monomers which extend the “polymer” upward. Find the entropy of this
macro state as a function of N and m. Assume that both N and m are � 1, and use
Stirling’s formula lnN ! ≈ N(lnN − 1) to simplify your result.

2. Write down the free energy of this macro-state of the “polymer”, as a function of N ,
m, and the temperature T .

3. From minimizing this free energy, calculate the equilibrium value of m as a function of
N and T .
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4. Calculate the equilibrium value of the free energy as a function of N and T , and from
which, calculate the specific heat of this “polymer” as a function of N and T . (Note:
Simplify your expression for the free energy to something quite simple before calculating
specific heat! Make sure your result has the right dimension, or else you get no credit
for this point.)

5. Show that in the limit kBT � J , the specific heat of this “polymer” is inversely
proportional to T 2, and obtain the coefficient of proportionality.

Problem 4. 3D quantum oscillator. 33pt

A 3D harmonic oscillator has mass m and the same spring constant mω2 for all three direc-
tions. It is coupled to a heat bath of temperature T .

1. What are the energy E0 and degeneracy g0 of the ground sate? Of the first excited
state? Of the second excited state?

2. What is the free energy of the oscillator?

3. What is the heat capacitance of the oscillator?

4. What is the rms fluctuation δE ≡ (E2 − (Ē)2)1/2 in the energy?

5. (extra 5 points) What is the degeneracy of the Kth excited energy level?
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EXAM 3. Final. Friday, Dec. 7, 2012

Problem 1. 1992-Fall-SM-G-5

In experiments on the absorption spectrum of gases at finite temperature, atoms are always
moving either towards or away from the light source with distribution of velocities vx. As
a consequences the frequency of the photon seen by an electron in a Bohr atom is Doppler
shifted to a value νD according to the classical formula

νD = ν0(1 + vx/c).

1. Write down the normalized Boltzmann distribution for vx.

2. Determine the distribution function g(νD) for the fraction of gas atoms that will absorb
light at frequency νD.

3. Determine the fractional linewidth(
∆ν

ν0

)
rms

≡

√〈
(νD − ν0)2

ν2
0

〉
.

4. Estimate the fractional linewidth for a gas of hydrogen atoms at room temperature.

Problem 2. 1996-Fall-SM-G-5

A system of N non-interacting Fermi particles with spin 1/2 and mass m, is confined to a
volume V . It is at temperature T = 0. The particles have an energy-momentum dispersion
given by ε = p2/2m.

1. Determine the chemical potential.

2. Determine the internal energy.

3. The original volume V adjoins a vacuum region with volume δV � V . Both chambers
are thermally isolated from the environment. The Fermi gas now freely expands into
the vacuum region. Assume that the internal energy as a function of the temperature
can be parametrized at low temperatures by

U = α(V ) + β(V )T 2,

where α(V ) and β(V ) are functions of volume. Determine the final temperature of the
gas after the expansion. Your answer should be expressed in terms of the functions
α(V ) and β(V ).

4. Determine α(V ).

5. Determine β(V ).
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[Hint: The following integral expressions may prove useful:∫ ∞
0

φ(x)dx

exz−1 + 1
=
∞∑
k=0

(
22k−1 − 1

22k−2

)
ζ(2k)Φ(2k)(ln z) ≈ Φ(ln z)+ζ(2)Φ(2)(ln z)+

7

4
ζ(4)Φ(4)(ln z),

where Φ(ξ) =
∫ ξ

0
φ(x)dx, and Φ(2n)(ξ) = ∂2nΦ(x)

∂x2n

∣∣∣
x=ξ

.

∫ ∞
0

xn−1dx

exz−1 + 1
= Γ(n)

∞∑
k=1

(−1)k+1 z
k

kn
,

∫ ∞
0

xn−1dx

exz−1 − 1
= Γ(n)

∞∑
k=1

zk

kn∫ ∞
0

xn−1dx

exz−1 − 1
= Γ(n)

[
Γ(1− n)[− ln z]n−1 +

∞∑
k=0

(−1)kξ(n− k)
[− ln z]k

Γ(k + 1)

zk

kn

]
]

Problem 3. 1997-Spring-SM-G-5

Consider N particles of a non-interacting spin-1/2 Fermi gas of mass m confined to a two

dimensional plane of area A. Take ε = ε0 (p/p0)3/2.

1. Determine the T = 0 energy of this Fermi gas.

2. Determine the T = 0 surface pressure, σ, of the Fermi gas. This surface pressure is the
force per unit length acting on the confining boundary of the gas.

Problem 4. 1998-Spring-SM-G-5

Consider a cyclic engine operating with one mole of an ideal gas in the following cycle:

a→ b: expansion at constant pressure, the temperature going from Ta to 3Ta.

b→ c: expansion at constant temperature 3Ta, the volume going to 4Va.

c→ d: cooling at constant volume 4Va, the temperature going to Ta.

b→ a: compression at constant temperature, the volume going from 4Va to Va.

1. Sketch the cycle on a P − V diagram.

2. Find the entropy change and the change in internal energy of the gas for each part of
the cycle. Find the net entropy change and the net change in internal energy over the
full cycle.

3. Calculate the thermodynamic efficiency of this engine and compare it to the ideal
efficiency of an engine operating between Ta and 3Ta. Assume no irreversible process
occur.

THE END!
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