EXAM 1. Tuesday, October 11, 2017

Problem 1. Name. 1pt.

Write down your name. Clearly. In block letters!

Problem 2. 1987-Fall-SM-G-4

Consider a cyclic engine operating with one mole of an ideal monoatomic gas in between two baths with temperatures T_a and $2T_a$ in the cycle $a \to b \to c \to d \to a$. V_a and T_a are the volume and the temperature of the gas in point a.

- $a \to b$ is isobaric increase of temperature from T_a to $2T_a$
- $b \to c$ isothermal expansion to the volume $3V_a$
- $c \to d$ decrease of temperature back to T_a at constant volume
- $d \to a$ isothermal compression back to the volume V_a

All processes are reversible.

- a. Calculate the efficiency of this engine and compare it to the maximum possible efficiency for an engine operating between T_a and $2T_a$.
- **b.** What is the net entropy change of the gas in one cycle?
- **c.** What is the net change of the energy of the gas in one cycle?
- **d.** What is the net change of the entropy of the hot thermal bath during one cycle, if all processes are reversible?
- **e.** What is the net change of the entropy of the cold thermal bath during one cycle, if all processes are reversible?

Problem 3. 1998-Spring-SM-G-4

Consider a soap film supported by a wire frame of fixed length l along one direction and of varying length x along the other direction. Because of surface tension σ , there is a force $2\sigma l$ tending to contract the film. Take $\sigma(T,x) = \sigma_0 - \alpha T$, where σ_0 and α are independent of T and x.

- 1. In one sentence, explain why the force is $2\sigma l$, rather than σl .
- 2. Express the energy change dE of the film due to work δW associated with the surface tension and heat δQ absorbed by the film through the atmosphere.
- 3. Calculate the work W done on the film when it is stretched at a constant temperature T_0 from length 0 to x.
- 4. Calculate the entropy change of the film when it is stretched at constant temperature T_0 from length 0 to x.

5. Calculate the change in energy $\Delta E = E(x) - E(0)$ when the film is stretched at constant temperature T_0 from length 0 to x.

Problem 4. 1984-Fall-SM-U-1

A cylinder closed at both ends equipped with insulating (adiabatic) walls, and is divided into two parts with a frictionless, insulating, movable piston. The gases on both sides are initially at equilibrium with identical pressure, volume, and temperature (P_0, V_0, T_0) . The gas is ideal with $C_V = 3R/2$ and $C_P/C_V = 5/3$. By means of a heating coil in the gas on the left hand side, heat is slowly supplied to the gas on the left until the pressure reaches $32P_0$. In terms of P_0 , V_0 , and V_0

- 1. What is the final right hand volume?
- 2. What is the final right hand temperature?
- 3. What is the final left hand temperature?
- 4. How much heat must be supplied to the gas on the left?
- 5. How much work is done on the gas on the right?
- 6. What is entropy change of the gas on the right?
- 7. Compute the entropy change of the gas on the left.

EXAM 2. Final. Saturday, December 10, 2016, 12:00-4:00pm

Write down your name. Clearly. In block letters!

Problem 1. 1992-Spring-SM-U-1

An ensemble of non-interacting pairs of Ising spins is in a magnetic field h and at temperature T. Each spin variable s_i^z can only take on values $s^z = \pm 1$. The two spins within each pair interact according to the Hamiltonian

$$H = -Js_1^z s_2^z - \mu_B h (s_1^z + s_2^z), \quad \text{with } J > 0$$

- 1. Enumerate the possible states of a single pair and compute their corresponding energies.
- 2. Derive an expression for the average value of a spin, $\langle s_i^z \rangle$, (i = 1, 2) as a function of J, T and h.
- 3. Given the above model, determine whether there exists a temperature T_c for which $\langle s_i^z \rangle$ can be non-zero at h = 0. Evaluate T_c .

Problem 2. 1995-Fall-SM-U-2

An ideal gas is expanded adiabatically from (P_1, V_1) to (P_2, V_2) [AB in figure below]. Then it is compressed at constant pressure to (P_2, V_1) [BC]. Finally the pressure is increased to P_1 at constant volume V_1 [CA].

- 1. Calculate W_{BC} , the work done by gas in going from B to C.
- 2. Calculate W_{CA} , the work done by gas in going from C to A.
- 3. For an ideal gas, show that $C_P = C_V + Nk$, and hence that $C_V = Nk/(\gamma 1)$, where $\gamma \equiv C_P/C_V$. (Here N is the number of molecules and k is the Boltzmann constant.)
- 4. Calculate W_{AB} the work done by gas in going from A to B, in terms of γ , P_2 , V_2 , P_1 , and V_1 .

- 5. Calculate Q_{CA} , the heat absorbed by gas in going from C to A, in terms of γ , V_1 , V_2 , P_2 and P_1 .
- 6. Calculate the efficiency $\eta \equiv W/Q_{CA}$ of the engine, and show that it is given by

$$\eta = 1 - \gamma \frac{1 - V_2/V_1}{1 - P_1/P_2}$$

(Why do you need to divide by Q_{CA} and not by $Q_{CA} + Q_{BC}$?)

Problem 3. 1995-Spring-SM-U-2

Consider a one-dimensional (non-harmonic) oscillator with energy given by

$$E = \frac{p^2}{2m} + bx^4,$$

where p is the momentum and b is some constant. Suppose this oscillator is in thermal equilibrium with a heat bath at a sufficiently high temperature T so that classical mechanics is valid.

- 1. Compute its mean kinetic energy as a fraction of kT.
- 2. Compute its mean potential energy as a fraction of kT.
- 3. Consider a collection of such non-interacting oscillators all at thermal equilibrium in one-dimension. What is the specific heat (per particle) of this system?

Hint: You might use

$$\int_0^\infty x^{n-1}e^{-x}dx = \Gamma(n), \qquad n \neq -1, -2, \dots$$

or an integration by parts in solving this problem.

Problem 4. 1990-Fall-SM-G-4

Let $\epsilon_{\vec{p}} = \rho(|p_x| + |p_y| + |p_z|)$ be the energy-momentum relation of a conducting electrons in a certain (fictitious) metal, where ρ is a constant with the dimensions of velocity, and |x| denotes the absolute value of x.

- 1. Draw a picture of a typical constant-energy surface $\epsilon_{\vec{p}} = \epsilon$, for the above dispersion $\epsilon_{\vec{p}}$.
- 2. Express the Fermi energy ϵ_F as a function of the electron density n for this metal. (Note, that electrons have spin 1/2.)
- 3. Calculate the electronic density of states (per unit volume) as a function of ϵ for this metal. Denote it as $D(\epsilon)$.
- 4. Calculate the total energy of N electrons at T=0 in this metal. Express E_0/N in terms of ϵ_F .

5. Now let the temperature T be finite. Express N and the total energy E as functions of T and the chemical potential μ . The expressions can involve integrals which you do not have to evaluate.

THE END!