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LECTURE 1. REVIEW OF PHYS 302. NEWTONIAN FORMULATION. 1

LECTURE 1
Review of Phys 302. Newtonian formulation.

1.0.1. Introduction

• Syllabus. Exams. Homeworks. Grades. Office hours etc.
• Structure (tentative) of the course.
• Questions, interruptions etc.
• Life is good and physics is great!

1.0.2. Newtonian formulation

• Inertial frame of references.
•

~F = m~a

•
~F12 = −~F21

• Write (draw) down all the forces that act on a body. Remember, that the force is
always a result of INTERaction.
• Chose a Cartesian system of coordinates in the inertial frame of reference.
• Write down the components of the forces in the chosen system of coordinates.
• For each component write down the equation of motion

Fi = mai, ~̇p = ~F .

• Solve the resulting system of generally nonlinear differential equations.
• Use the initial conditions in order to find the motion ~r(t).

Pros:
• Very straight forward and intuitive.
• Very general – the nature of the forces does not matter, as long as you know them.

Cons:
• The symmetries and corresponding conservation laws are hidden.
• Difficult to use in anything but the inertial frame and Cartesian coordinates. (ficti-
tious forces etc)
• Very quickly becomes cumbersome. Easy to make mistakes.

Examples. Wedge. Wedge with friction. Oscillator. Pendulum.

1.1. Conservation laws.
• Momentum conservation law.

– Center of mass motion.
Example: Rocket motion, Inelastic collision.

Mv = (M + dM)(v + dv) + (V0 − v)dM,
dv

V0
= −dM

M
, vf − vi = −V0 log Mf

Mi

• Angular momentum conservation law.
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– Torque
~τ = ~r × ~F

– Angular momentum
~J = ~r × ~p

– Central internal forces.
–

~̇J = ~τex.

Example: A bullet in a disc.
Example: A bullet in a disc-like wheel with no friction. What height should the bullet strike
for the wheel to roll without slipping?



LECTURE 2
Review of Phys 302. Energy conservation.

Example: At what point should the stick strike so that the striking hand feel good?
• Energy conservation law.

– Work
A =

∫ B

A

~F · d~r
It depends on the path from A to B.

– Kinetic energy.

A =
∫
~F · d~r =

∫
m
d~v

dt
· ~vdt =

∫
m~v · d~v = ∆m~v2

2 .

– Conservative forces.
~F = −∂U

∂~r
– Potential energy U . If forces depend on coordinates only it does not mean that
the force is conservative and the function U exists.

– On a closed contour the work of a conservative force equals zero.
– For a conservative force the work does not depend on the path.
– Total energy

E = m~v2

2 + U.

is conserved
dE

dt
= m~v · d~v

dt
+ ∂U

∂~r
· d~r
dt

=
(
m~a− ~F

)
· ~v = 0

Examples: A wall with rope and a cart. Elastic 1D collision.
Examples of both Energy and momentum conservation: Elastic collision in 2D (case of

equal masses.)
Example of 1D motion under conservative force.∫ xf

x0

dx√
E − U(x)

= ±
√

2
m

(t− t0), x(t = t0) = x0, E = mv2
0

2 + U(x0).

Example: 1D, the graph U(x).

3





LECTURE 3
Review of Phys 302. Lagrangian and Hamiltonian

formulations.

3.1. Lagrangian formulation.
• Action

S =
∫ B

A
Ldt

• Hamilton principle. Minimum of action. Lagrangian L({qi}, {q̇i}, t). Euler-Lagrange
equation.

d

dt

∂L

∂q̇i
= ∂L

∂qi
•

L = K − U
• Generalized momentum (canonical)

pi = ∂L

∂q̇i
.

• Conservation of generalized momentum (ignorable coordinates).
• Conservation of energy – no explicit time dependence in the Lagrangian.

Cons:
• Only conservative forces.

Pros:
• General coordinates.
• Only one scalar function L needs to be constructed. Easier.
• Symmetries are more transparent.

Examples:
• Pendulum in the accelerating car.

The technique of minimizing a functional is not used in mechanics exclusively. There
are a lot of problems where such techniques are useful. The conservation lows will also be
applicable there, but will, in general, have different meaning.

5
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3.2. Hamiltonian formulation
• Phase space ({qi}, {pi}).
• Poisson brackets {pi, qj}.
• Hamiltonian H({qi}, {pi}).
• Hamiltonian equation of motion:

ṗi = {H, pi}, q̇i = {H, qi}

• In canonical coordinates and momenta

{pi, qj} = δi,k, {f, g} =
∑
i

(
∂g

∂pi

∂f

∂qi
− ∂g

∂qi

∂f

∂pi

)
.

•

ṗi = −∂H
∂qi

, q̇i = ∂H

∂pi
•

H(pi, qi) =
∑
i

piq̇i − L, pi = ∂L

∂q̇i

3.3. Motion in 2D in a central field
• Motion in 2D in a central field.

L = mṙ2

2 + mr2φ̇2

2 − U(r)

d

dt
mṙ = mrφ̇2 − ∂U

∂r
,

d

dt
mr2φ̇ = 0

So we the angular momentum

Lφ = mr2φ̇

is conserved. We can use then φ̇ = Lφ
mr2 and write

d

dt
mṙ =

L2
φ

mr3 −
∂U

∂r
= − ∂

∂r

(
L2
φ

2mr2 + U

)

This is a motion in 1D in the effective central potential

Ueff (r) = U(r) +
L2
φ

2mr2 .

We then know the solution

dr√
E − Ueff (r)

= ±
√

2
m
dt, dt = mr2

Lφ
dφ

or
±dφ = Lφ√

2m
1
r2

dr√
E − Ueff (r)
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• Kepler orbits. Let’s use the gravitational potential energy

U(r) = −GMm

r
,

then we have
Ueff = −GMm

r
+

L2
φ

2mr2

and
φ− φ0 = Lφ√

2m

∫ r

r0

dr′

r′2
1√

E − GMm
r′ + L2

φ

2mr′2

• Scattering angle.





LECTURE 4
Probability density. Disintegration of a particle.

4.1. Probability density.
• Probability density.

– Probability.
– Probability density.
– Positive definite.
– Normalization.
– Averaging: 〈v2〉 =

∫
v2ρ(v)dv, or more generally 〈f(v)〉 =

∫
f(v)ρ(v)dv.

– 1D quantum harmonic oscillator with potential energy U(x) = mω2x2

2 : the wave
function of the ground state is ψ(x) =

(
mω
π~

)1/4
e−

mω
2~ x

2 . The probability density
for the coordinate is

ρ(x) = |ψ(x)|2 =
(
mω

π~

)1/2
e−

mω
~ x2

,
∫ ∞
−∞

ρ(x)dx = 1.

Average position in the ground state is given by

〈x〉 =
∫ ∞
−∞

xρ(x)dx = 0.

However,

〈x2〉 =
∫ ∞
−∞

x2ρ(x)dx = 1
2

~
mω

.

In particular average potential energy

〈U(x)〉 =
∫ ∞
−∞

U(x)ρ(x)dx = mω2

2 〈x
2〉 = 1

4~ω.

We also can ask what is probability density for the potential energy U? We see,
that x =

√
2U/mω2, so dx = dU√

2Umω2 .

ρ(x)dx = ρ
(√

2U/mω2
)

dU√
2Umω2

= 1√
2πU~ω

e−
U
~ω dU.

so
ρU(U) = 1√

2πU~ω
e−

U
~ω ,

∫ ∞
0

ρU(U)dU = 1.

9
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Figure 1. Illustrations to the equations (4.1) and (4.2).

– Change of variables.
Let’s say we have a probability density ρ(v) to find a speed between v and v+dv.
We want to find the probability density to find a kinetic energy between K and
K + dK. The probability is

dp = ρ(v)dv

The kinetic energy is K = mv2

2 , or v =
√

2K/m, so dv = dK

m
√

2K/m
, and

dp = ρ(
√

2K/m) 1
m
√

2K/m
dK, ρK(K) = ρ(

√
2K/m) 1

m
√

2K/m
.

– Notice the change of differential!
– Uniform distribution.

4.2. Disintegration of a particle.
• Disintegration of a single particle.

– In the center of mass system of reference

m1vC1 +m2vC2 = 0, m1v
2
C1

2 + m2v
2
C2

2 = ε,

m1v
2
C1

2 + m2
1v

2
C1

2m2
= m1v

2
C1

2

(
1 + m1

m2

)
= ε

– In the laboratory system of reference

~vL1 = ~V + ~vC1.

– Kinematics show

(4.1) sin(θL,max) = vC1

V
, if V > vC1

and

(4.2) tan θL = vC1 sin(θ)
vC1 cos(θ) + V

,

or

cos θ = − V

vC1
sin2(θL)± cos(θL)

√
1− V 2

v2
C1

sin2(θL).
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For vC1 > V the result is one-to-one, we must take the + sign, so that θ(θL =
0) = 0, for vC1 < V the result is not one-to-one: for a single θL in laboratory
frame, there are two θs in the center of mass frame.

• Disintegration of many particles.
– We are watching only particle number 1.
– In each disintegration we know the speed vC1. The speed in the center of mass
reference frame is the same for all disintegrating particles.

– The direction of the vector ~vC1 is arbitrary. We assume that there is no pref-
erential direction (the way the initial particle was set up) and any direction of
~vC1 is equally probable.

– All detectors are on a sphere of radius R. In the center of mass ref. frame the
probability to find the particle 1 in the solid angle dΩ is

dp = R2dΩ
4πR2 = sin(θ)dθdφ

4π
– The probability density to find the velocity ~vC1 direction between the angle θ
and θ + dθ is (we do not care about the angle φ.)

dp = dθ
∫ 2π

0

sin(θ)dφ
4π = 1

2 sin(θ)dθ.

(One should check that the total is 1.)
– In the laboratory reference frame ~vL1 = ~V + ~vC1, so

v2
L1 = V 2 + v2

C1 + 2V vC1 cos(θ).
where θ is the angle in the center of mass ref. frame.

– The kinetic energy of the particle 1 in the laboratory ref. frame is

KL = m1v
2
L1

2 = m1V
2

2 + m1v
2
C1

2 +m1V vC1 cos(θ),

dK = −m1V vC1 sin(θ)dθ.
–

dp = 1
2m1V vC1

dK.

The uniform distribution: ρK = 1
2m1V vC1

– The maximum kinetic energy is Kmax = m1(V+vC1)2

2 . For V > vC1 the minimum
is Kmin = m1(V−vC1)2

2 .
– One can check that ∫ Kmax

Kmin
ρKdK = 1





LECTURE 5
Scattering cross-section.

• Set up of a scattering problem. Experiment, detector, etc.
• Energy. Impact parameter. The scattering angle. Impact parameter as a function
of the scattering angle ρ(θ).
• Flux of particle. Same energy, different impact parameters, different scattering an-
gles.
• The scattering problem, n — the flux, number of particles per unit area per unit
time. dN the number of particles scattered between the angles θ and θ+ dθ per unit
time. A suitable quantity to describe the scattering

dσ = dN

n
.

• It has the units of area and is called differential cross-section.
• If we know the function ρ(θ) , then only the particles which are in between ρ(θ) and
ρ(θ + dθ) are scattered at the angle between θ and θ + dθ. So dN = n2πρdρ, or

dσ = 2πρdρ = 2πρ
∣∣∣∣∣dρdθ

∣∣∣∣∣ dθ
(The absolute value is needed because the derivative is usually negative.)
• Often dσ refers not to the scattering between θ and θ + dθ, but to the scattering to
the solid angle dω = 2π sin θdθ. Then

dσ = ρ

sin θ

∣∣∣∣∣dρdθ
∣∣∣∣∣ dω

Examples
• Cross-section for scattering of particles from a perfectly rigid sphere of radius R.

– The scattering angle θ = 2φ.
– R sinφ = ρ, so ρ = R sin(θ/2).
–

dσ = ρ

sin θ

∣∣∣∣∣dρdθ
∣∣∣∣∣ dω = 1

4R
2dω

– Independent of the incoming energy. The scattering does not probe what is
inside.

13
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Figure 1. The scattering processes from: left, rigid sphere; right, spherical square
potential −U0.

– The total cross-section area is

σ =
∫
dσ = 1

4R
22π

∫ π

0
sin θdθ = πR2

• Cross-section for scattering of particles from a spherical potential well of depth U0
and radius R.
– Energy conservation

mv2
0

2 = mv2

2 − U0, v = v0

√
1 + 2U0

mv2
0

= v0

√
1 + U0/E

– Angular momentum conservation

v0 sinα = v sin β, sinα = n(E) sin β, n(E) =
√

1 + U0/E

– Scattering angle
θ = 2(α− β)

– Impact parameter
ρ = R sinα

– So we have
ρ

R
= sin(α) = n sin(β) = n sin(α− θ/2) = n sinα cos(θ/2)− n cosα sin(θ/2)

= n
ρ

R
cos(θ/2)− n

√
1− ρ2/R2 sin(θ/2)

ρ2 = R2 n2 sin2(θ/2)
1 + n2 − 2n cos(θ/2) .

– The differential cross-section is

dσ = R2n2

4 cos(θ/2)
(n cos(θ/2)− 1)(n− cos(θ/2))

(1 + n2 − 2n cos(θ/2))2 dω

– Differential cross-section depends on E/U0, where E is the energy of incoming
particles. By measuring this dependence we can find U0 from the scattering.



LECTURE 5. SCATTERING CROSS-SECTION. 15
– The scattering angle changes from 0 (ρ = 0) to θmax, where cos(θmax) = 1/n
(for ρ = R). The total cross-section is the integral

σ =
∫ θmax

0
dσ = πR2.

It does not depend on energy or U0.
• Negative U0.

– Consider a negative U0 – this is not a well, but a bump.
– Then for E > U0

n =
√

1− |U0|/E < 1
and it is imaginary for E < U0.

– For E > U0, or n < 1, there is no solution of equation sin(α) = n sin(β) for
α > αcr = sin−1(n).

– So for R sin(αcr) = nR < ρ < R the particle does not penetrate inside the
potential.

– In this range of impact parameters we will have a reflection from a “rigid” sphere.





LECTURE 6
Rutherford’s formula.

6.1. Rutherford experiment.
• What is the question?
• Experiment set up.
• Expected result from Thomson model.
• Obtained result.

6.2. Rutherford formula.
Consider the scattering of a particle of initial velocity v∞ from the central force given by the
potential energy U(r).

• The energy is

E = mv2
∞

2 .

• The angular momentum is given by
Lφ = mv∞ρ,

where ρ is the impact parameter.
• The trajectory is given by

±(φ− φ0) = Lφ√
2m

∫ r

r0

1
r2

dr√
E − Ueff (r)

, Ueff (r) = U(r) +
L2
φ

2mr2

where r0 and φ0 are some distance and angle on the trajectory.
At some point the particle is at the closest distance r0 to the center. The angle at this

point is φ0 (the angle at the initial infinity is zero.) Let’s find the distance r0. As the
energy and the angular momentum are conserved and at the closest point the velocity is
perpendicular to the radius we have

E = mv2
0

2 + U(r0), Lφ = mr0v0.

so we find that the equation for r0 is
Ueff (r0) = E.

17
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This is, of course, obvious from the picture of motion in the central field as a one dimensional
motion in the effective potential Ueff (r).

Figure 1. Rutherford experiment.

The angle φ0 is then given by

(6.1) φ0 = Lφ√
2m

∫ ∞
r0

1
r2

dr√
E − Ueff (r)

.

From geometry the scattering angle θ is given by the
relation

(6.2) θ + 2φ0 = π.

So we see, that for a fixed v0 the energy E is given, but the angular momentum Lφ
depends on the impact parameter ρ. The equation (6.1) then gives the dependence of φ0
on ρ. Then the equation (6.2) gives the dependence of the scattering angle θ on the impact
parameter ρ. If we know that dependence, we can calculate the scattering cross-section.

dσ = ρ

sin θ

∣∣∣∣∣dρdθ
∣∣∣∣∣ dω

Example: Coulomb interaction. Let’s say that we have a repulsive Coulomb interaction

U = α

r
, α > 0

In this case the geometry gives
θ = π − 2φ0.

Let’s calculate φ0

φ0 = Lφ√
2m

∫ ∞
r0

1
r2

dr√
E − α

r
− L2

φ

2mr2

where r0 is the value of r, where the expression under the square root is zero.
Let’s take the integral∫ ∞

r0

1
r2

dr√
E − α

r
− L2

φ

2mr2

=
∫ 1/r0

0

dx√
E − αx− x2 L

2
φ

2m

=
∫ 1/r0

0

dx√
E + α2m

2L2
φ
− L2

φ

2m(x+ αm
L2
φ

)2

=
√√√√2m
L2
φ

∫ 1/r0

0

dx√
2mE
L2
φ

+ α2m2

L4
φ
− (x+ αm

L2
φ

)2

changing
√

2mE
L2
φ

+ α2m2

L4
φ

sinψ = x+ αm
L2
φ
we find that the integral is√√√√2m
L2
φ

∫ π/2

ψ1
dψ,

where sin(ψ1) = αm
L2
φ

(
2mE
L2
φ

+ α2m2

L4
φ

)−1/2
So we find that

φ0 = π/2− ψ1

or

cosφ0 = sinψ1 = αm

L2
φ

(
2mE
L2
φ

+ α2m2

L4
φ

)−1/2

.
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Using Lφ = ρ
√

2mE this gives

sin θ2 = α

2E

(
ρ2 + α2

4E2

)−1/2

or
α2

4E2 cot2 θ

2 = ρ2

The differential cross-section then is

dσ = dρ2

dθ

1
2 sin θdω =

(
α

4E

)2 1
sin4(θ/2)dω

• Notice, that the total cross-section diverges at small scattering angles.





LECTURE 7
Rutherford’s formula. Intro in oscillations.

7.1. Rutherford formula.
Rutherford’s formula.

dσ = dρ2

dθ

1
2 sin θdω =

(
α

4E

)2 1
sin4(θ/2)dω

Divergence of the forward scattering in the ideal case – the cross-section of the beam.
• The beam. How do you characterize it?
• What is measured?
• The statistics. How much data we need to collect to get certainty of our results?
• The beam again. Interactions.
• Final state interactions.
• The forward scattering diverges.
• The cut off of the divergence is given by the size of the atom.
• Back scattering. Almost no dependence on θ.
• Energy dependence 1/E2.
• Plot dσ as a function of 1/(4E)2, expect a straight line at large 1/(4E)2.
• The slope of the line gives α2.
• What is the behavior at very large E? What is the crossing point?
• The crossing point tells us the size of the nucleus dσ = R2

4 dω.

7.2. Small oscillations.
Problem with one degree of freedom: U(x). The Lagrangian is

L = mẋ2

2 − U(x).

The equation of motion is

mẍ = −∂U
∂x

If the function U(x) has an extremum at x = x0, then ∂U
∂x

∣∣∣
x=x0

= 0. Then x = x0 is a (time
independent) solution of the equation of motion.

21
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Consider a small deviation from the solution x = x0 + δx(t). Assuming that δx stays
small during the motion we have

U(x) = U(x0 + δx) ≈ U(x0) + U ′(x0)δx+ 1
2U
′′(x0)δx2 = U(x0) + 1

2U
′′(x0)δx2

The equation of motion becomes
mδ̈x = −U ′′(x0)δx

• If U ′′(x0) > 0, then we have small oscillations with the frequency

ω2 = U ′′(x0)
m

This is a stable equilibrium.
• If U ′′(x0) < 0, then the solution grows exponentially, and at some point our approx-
imation becomes invalid. The equilibrium is unstable.

Look at what it means graphically.

7.2.1. Examples.

• U(x) = kx2

2 + γx4

4 , where k > 0 and γ > 0.
• U(x) = −kx2

2 + γx4

4 , where k > 0 and γ > 0.
Look at what it means graphically.

7.2.2. Noise and dissipation.

Generality: consider a system with infinitesimally small dissipation and external perturba-
tions. The perturbations will kick it out of any unstable equilibrium. The dissipation will
bring it down to a stable equilibrium. It may take a very long time.

After that the response of the system to small enough perturbations will be defined by
the small oscillations around the equilibrium



LECTURE 8
Oscillations. Many degrees of freedom.

8.1. Full solution in 1D.
The equation

ẍ = −ω2x, ω2 = U ′′(x0)/m > 0, U ′(x0) = 0
General solution

x(t) = A cos(ωt) +B sin(ωt) = C cos(ωt+ φ) = <C̃eiωt, C̃ = Ceiφ.

The two arbitrary constants A and B, or C and φ, or one complex C̃ must be found from
the initial conditions.

x(0) = x0, ẋ(0) = v0.

8.2. Special ω = 0 case.
8.3. Many degrees of freedom.
Consider two equal masses in 1D connected by springs of constant k to each other and to
the walls.

There are two coordinates: x1 and x2.
There are two modes x1 − x2 and x1 + x2.
The potential energy of the system is

U(x1, x2) = kx2
1

2 + k(x1 − x2)2

2 + kx2
2

2
The Lagrangian

L = mẋ2
1

2 + mẋ2
2

2 − kx2
1

2 −
k(x1 − x2)2

2 − kx2
2

2
The equations of motion are

mẍ1 = −2kx1 + kx2

mẍ2 = −2kx2 + kx1

These are two second order differential equations. Total they must have four solutions. Let’s
look for the solutions in the form

x1 = A1e
iωt, x2 = A2e

iωt

23
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then

−ω2mA1 = −2kA1 + kA2

−ω2mA2 = −2kA2 + kA1

or

(2k −mω2)A1 − kA2 = 0
(2k −mω2)A2 − kA1 = 0

or (
2k −mω2 −k
−k 2k −mω2

)(
A1
A2

)
= 0

In order for this set of equations to have a non trivial solution we must have

det
(

2k −mω2 −k
−k 2k −mω2

)
= 0, (2k−mω2)2− k2 = 0, (k−mω2)(3k−mω2) = 0

There are two modes with the frequencies

ω2
a = k/m, ω2

b = 3k/m

and corresponding eigen vectors(
Aa1
Aa2

)
= Aa

(
1
1

)
,

(
Ab1
Ab2

)
= Ab

(
1
−1

)
The general solution then is(

x1
x2

)
= Aa

(
1
1

)
cos(ωat+ φa) + Ab

(
1
−1

)
cos(ωbt+ φb)

• Picture of the eigen modes.
• Symmetry.

What will happen if the masses and springs constants are different?
Repeat the previous calculation for arbitrary m1, m2, k1, k2, k3.
The Lagrangian

L = m1ẋ
2
1

2 + m2ẋ
2
2

2 − k1x
2
1

2 − k2(x1 − x2)2

2 − k3x
2
2

2 .

The equations of motion

m1ẍ1 = −(k1 + k2)x1 + k2x2

m2ẍ2 = k2x1 − (k3 + k2)x2.

We look for the solution in the form(
x1
x2

)
= eiωt

(
A1
A2

)
.

The equations become(
k1 + k2 − ω2m1 −k2

−k2 k2 + k3 − ω2m2

)(
A1
A2

)
= 0.
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There is a non-trivial solution iff

det
(
k1 + k2 − ω2m1 −k2

−k2 k2 + k3 − ω2m2

)
= 0.

It will have two solutions for ω2 (it may be degenerate). Correspondingly it will have two
eigen vectors.

ω2 = ω2
a −→

(
Aa1
Aa2

)
, ω2 = ω2

b −→
(
Ab1
Ab2

)
.

The general solution then is(
x1
x2

)
= a

(
Aa1
Aa2

)
cos(ωat+ φa) + b

(
Ab1
Ab2

)
cos(ωbt+ φb).

The four constants a, φa, b, and φb must be found from the initial conditions.
General scheme.





LECTURE 9
Oscillations. Many degrees of freedom.

9.1. Example of ω = 0.
A rail and two objects with masses m and M connected by a spring k.

The Lagrangian is

L = mẋ2
1

2 + Mẋ2
2

2 − k(x1 − x2)2

2 .

The equations of motion are

mẍ1 = −k(x1 − x2)
Mẍ2 = −k(x2 − x1)

Looking for a solution in the form(
x1(t)
x2(t)

)
=
(
A1
A2

)
eiωt,

then (
−ω2m+ k −k
−k −ω2M + k

)(
A1
A2

)
= 0.

So the determinant equal zero requirement gives

ω4mM − k(m+M)ω2 = 0.

Two solutions

ω2 = 0,
(

1
1

)
, ω2 = k

m+M

mM
,

(
M
m

)
.

The full solution is(
x1(t)
x2(t)

)
= (v0t+ x0)

(
1
1

)
+ a

(
M
m

)
cos

√km+M

mM
t+ φ


• Role of symmetry for zero mode.
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9.2. Example of mode disappearing.
A rail a wall and to objects with masses m and M connected by a spring k with each other
and by the spring k through mass m with the wall. Consider the case m = 0 and m→ 0.

The Lagrangian is

L = mẋ2
1

2 + Mẋ2
2

2 − kx2
1

2 −
k(x1 − x2)2

2
The equations of motion are

mẍ1 = −kx1 − k(x1 − x2)
Mẍ2 = −k(x2 − x1)

Looking for a solution in the form(
x1(t)
x2(t)

)
=
(
A1
A2

)
eiωt,

then (
−ω2m+ 2k −k
−k −ω2M + k

)(
A1
A2

)
= 0.

So the determinant equal zero requirement gives
ω4mM − k(m+ 2M)ω2 + k2 = 0.

• Notice, that if we put m = 0 directly in the equation we will get a single solution
ω2 = k/2M . However, for any, no matter how small m 6= 0 we must have two modes!
What happens to the second mode as m→ 0?

The two solutions are
ω2 = k

2M +m±
√

4M2 +m2

2mM
For m�M , we have

ω2
− = k

2M , ω2
+ = 2k

m
→∞.

Physical picture:
• Mode ω−: when m is very small, we have two springs in series (spring constant k/2)
acting on mass M .
• Mode ω+: when m is very small, M almost does not move we have two springs in
parallel (spring constant 2k) acting on mass m.
• When m→ 0 acceleration goes to infinity, so is corresponding frequency.

9.3. General situation.
Let’s consider a general situation in detail. We start from an arbitrary Lagrangian

L = K({q̇i}, {qi})− U({qi})
Very generally the kinetic energy is zero if all velocities are zero. It will also increase if any
of the velocities increase.

It is assumed that the potential energy has a minimum at some values of the coordinates
qi = qi0. Let’s first change the definition of the coordinates xi = qi − q0i. We rewrite the
Lagrangian in these new coordinates.

L = K({ẋi}, {xi})− U({xi})
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We can take the potential energy to be zero at xi = 0, also as xi = 0 is a minimum we must
have ∂U/∂xi|{xi}=0 = 0.

Let’s now assume, that the motion has very small amplitude. We then can use Taylor
expansion in both {ẋi} and {xi} up to the second order.

The time reversal invariance demands that only even powers of velocities can be present in
the expansion. Also as the kinetic energy is zero if all velocities are zero, we haveK(0, {xi}) =
0, so we have

K({ẋi}, {xi}) ≈
1
2
∑
i,j

∂K

∂ẋi∂ẋj

∣∣∣∣∣
ẋ=0,x=0

ẋiẋj = 1
2kijẋiẋj,

where the constant matrix kij is symmetric and positive definite.
For the potential energy we have

U({xi}) ≈
1
2
∑
i,j

∂U

∂xi∂xj

∣∣∣∣∣
x=0

xixj = 1
2uijxixj,

where the constant matrix uij is symmetric. If x = 0 is indeed a minimum, then the matrix
uij is also positive definite.

The Lagrangian is then
L = 1

2kijẋiẋj −
1
2uijxixj

where kij and uij are just constant matrices. The Lagrange equations are
kijẍj = −uijxj

We are looking for the solutions in the form
xaj = Aaje

iωat,

then
(9.1)

(
ω2
akij − uij

)
Aaj = 0,

where the summation over the index j is assumed.
In order for this linear equation to have a nontrivial solution we must have

det
(
ω2
akij − uij

)
= 0

After solving this equation we can find allN of eigen/normal frequencies ωa and the eigen/normal
modes of the small oscillations Aai .

We can prove, that all ω2
a are positive (if U is at minimum.) Let’s substitute the solutions

ωa and Aaj into equation (9.1), multiply it by (Aai )∗ and sum over the index i.∑
ij

(
ω2
akij − uij

)
Aaj (Aai )

∗ = 0.

From here we see
ω2
a =

∑
ij uijA

a
j (Aai )

∗∑
ij kijA

a
j (Aai )

∗

As both matrices kij and uij are symmetric and positive definite, we have the ratio of two
positive real numbers in the RHS. So ω2

a must be positive and real.
Examples
• Problem with three masses on a ring. Symmetries. Zero mode.
• Two masses, splitting of symmetric and anitsymmetric modes.





LECTURE 10
Oscillations with parameters depending on time.

Kapitza pendulum.

• Oscillations with parameters depending on time.

L = 1
2m(t)ẋ2 − 1

2k(t)x2.

The Lagrange equation
d

dt
m(t) d

dt
x = −k(t)x.

We change the definition of time

m(t) d
dt

= d

dτ
,

dτ

dt
= 1
m(t)

then the equation of motion is
d2x

dτ 2 = −mkx.

So without loss of generality we can consider an equation

ẍ = −ω2(τ)x

• We call Ω the frequency of change of ω.
• Different time scales. Three different cases: Ω� ω, Ω� ω, and Ω ≈ ω.

10.1. Kapitza pendulum Ω� ω

10.1.1. Vertical displacement.

• Set up of the problem.
• Time scales difference.
• Expected results.

The coordinates
x = l sinφ
y = l(1− cosφ) + ξ

,
ẋ = lφ̇ cosφ
ẏ = lφ̇ sinφ+ ξ̇
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The Lagrangian

L = ml2

2 φ̇2 +mlφ̇ξ̇ sinφ+mgl cosφ
The equation of motion

φ̈+ ξ̈

l
sinφ = −ω2 sinφ, ω2 = g/l

Look for the solution
φ = φ0 + θ, θ̄ = 0

• What does averaging means. Separation of the time scales. Time T such that
Ω−1 � T � ω−1.

We expect θ to be small, but θ̇ and θ̈ are NOT small. The equation then is

(10.1) φ̈0 + θ̈ + ξ̈

l
sinφ0 + ξ̈

l
θ cosφ0 = −ω2 sinφ0 − ω2θ cosφ0

The frequency of the function φ0 is small, so the fast oscillating functions must cancel each
other. So

θ̈ + ξ̈

l
sinφ0 + ξ̈

l
θ cosφ0 = −ω2θ cosφ0.

Neglecting term proportional to small θ we get

θ = −ξ
l

sinφ0.

As ξ̄ = 0, the requirement θ̄ = 0 fixes the other terms coming from the integration.
Now we take the equation (10.1) and average it over the time T .

φ̈0 + θξ̈

l
cosφ0 = −ω2 sinφ0

We now have

θξ̈ = −ξξ̈ 1
l

sinφ0, ξξ̈ = 1
T

∫ T

0
ξξ̈dt = − 1

T

∫ T

0
(ξ̇)2dt = −(ξ̇)2

Our equation then is

φ̈0 = −
ω2 sinφ0 + (ξ̇)2

2l2 sin 2φ0

 = − ∂

∂φ0

−ω2 cosφ0 −
(ξ̇)2

4l2 cos 2φ0


So we have a motion in the effective potential field

Ueff = −ω2 cosφ0 −
(ξ̇)2

4l2 cos 2φ0

The equilibrium positions are given by

∂U

∂φ0
= ω2 sinφ0 + (ξ̇)2

2l2 sin 2φ0 = 0, sinφ0

ω2 + (ξ̇)2

l2
cosφ0

 = 0

We see, that if ω2l2

(ξ̇)2
< 1, a pair of new solutions appears.

The stability is defined by the sign of

∂2U

∂φ2
0

= ω2 cosφ0 + (ξ̇)2

l2
cos 2φ0
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One see, that

• φ0 = 0 is always a stable solution.
• φ0 = π is unstable for ω2l2

(ξ̇)2
> 1, but becomes stable if ω2l2

(ξ̇)2
< 1.

• The new solutions that appear for ω2l2

(ξ̇)2
< 1 are unstable.

For φ0 close to π we can introduce φ0 = π + φ̃

¨̃φ = −ω2

 (ξ̇)2

l2ω2 − 1
 φ̃

We see, that for (ξ̇)2

l2ω2 > 1, the oscillations in the upper point have the frequency

ω̃2 = ω2

 (ξ̇)2

l2ω2 − 1


Remember, that above calculation is correct if Ω of the ξ is much larger than ω. If ξ is
oscillating with the frequency Ω, then we can estimate (ξ̇)2 ≈ Ω2ξ2

0 , where ξ0 is the amplitude
of the motion. Then the interesting regime ( (ξ̇)2/l2ω2 ∼ 1) is at

Ω2 ∼ ω2 l
2

ξ2
0
� ω2.

So the interesting regime is well withing the applicability of the employed approximations.





LECTURE 11
Oscillations with parameters depending on time.

Kapitza pendulum. Horizontal case.

Let’s consider a shaken pendulum without the gravitation force acting on it. The fast
shaking is given by a fast time dependent vector ~ξ(t). This vector defines a direction in space.
I will call this direction ẑ, so ~ξ(t) = ẑξ(t).

The amplitude ξ is small ξ � l, where l is the length of the pendulum, but the shaking
is very fast Ω � ω, the frequency of the pendulum motion (without gravity it is not well
defined, but we will keep in mind that we are going to include gravity later.)

Let’s now use a non inertial frame of reference connected to the point of attachment of the
pendulum. In this frame of reference there is a artificial force which acts on the pendulum.
This force is

~f = −ξ̈mẑ.

If the pendulum makes an angle φ with respect to the axis ẑ, then the torque of the force ~f
is ~τ = ~r × ~f , its magnitude τ = lf sinφ — the positive direction is defined by the positive
direction of the angle. So the equation of motion

ml2φ̈ = lmξ̈ sinφ, φ̈ = ξ̈

l
sinφ

Now we split the angle onto slow motion described by φ0 – a slow function of time, and
fast motion θ(t) a fast oscillating function of time such that θ̄ = 0.

We then have

φ̈0 + θ̈ = ξ̈

l
sin(φ0 + θ)

Notice the non linearity of the RHS.
As θ � φ0, we can use the Taylor expansion

(11.1) φ̈0 + θ̈ = ξ̈

l
sin(φ0) + ξ̈θ

l
cos(φ0)

Double derivatives of θ and ξ are very large, so in the zeroth order we can write

θ̈ = ξ̈

l
sin(φ0), θ = ξ

l
sin(φ0).
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Now averaging the equation (11.1) in the way described in the previous lecture we get

φ̈0 = ξ̈θ

l
cos(φ0) = ξ̈ξ

l2
sin(φ0) cos(φ0)

or

φ̈0 = ξ̈θ

l
cos(φ0) = − ξ̇

2

l2
sin(φ0) cos(φ0)

Figure 1. The Kapitza
pendulum.

What is happening is illustrated on the figure. If ξ is posi-
tive, then ξ̈ is negative, so the torque is negative and is larger,
because the angle φ = φ0 + θ is larger. So the net torque is
negative!

11.0.1. Vertical.

Now we can get the result from the previous lecture. We just
need to add the gravitational term −ω2 sinφ0.

φ̈0 = −ω2 sinφ0 −
ξ̇2

l2
sin(φ0) cos(φ0).

So we have a motion in the effective potential field

Ueff = −ω2 cosφ0 −
(ξ̇)2

4l2 cos 2φ0

The equilibrium positions are given by

∂U

∂φ0
= ω2 sinφ0 + (ξ̇)2

2l2 sin 2φ0 = 0, sinφ0

ω2 + (ξ̇)2

l2
cosφ0

 = 0

We see, that if ω2l2

(ξ̇)2
< 1, a pair of new solutions appears.

The stability is defined by the sign of

∂2U

∂φ2
0

= ω2 cosφ0 + (ξ̇)2

l2
cos 2φ0

One see, that
• φ0 = 0 is always a stable solution.
• φ0 = π is unstable for ω2l2

(ξ̇)2
> 1, but becomes stable if ω2l2

(ξ̇)2
< 1.

• The new solutions that appear for ω2l2

(ξ̇)2
< 1 are unstable.

For φ0 close to π we can introduce φ0 = π + φ̃

¨̃φ = −ω2

 (ξ̇)2

l2ω2 − 1
 φ̃

We see, that for (ξ̇)2

l2ω2 > 1 the frequency of the oscillations in the upper point have the
frequency

ω̃2 = ω2

 (ξ̇)2

l2ω2 − 1

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Remember, that above calculation is correct if Ω of the ξ is much larger then ω. If ξ is

oscillating with the frequency Ω, then we can estimate (ξ̇)2 ≈ Ω2ξ2
0 , where ξ0 is the amplitude

of the motion. Then the interesting regime is at

Ω2 > ω2 l
2

ξ2 � ω2.

So the interesting regime is well withing the applicability of the employed approximations.

11.0.2. Horizontal.

If ξ is horizontal, the it is convenient to redefine the angle φ0 → π/2 + φ0, then the shake
contribution changes sign and we get

Ueff = −ω2 cosφ0 + (ξ̇)2

4l2 cos 2φ0

The equilibrium position is found by

∂Ueff
∂φ0

= sinφ0

ω2 − (ξ̇)2

l2
cosφ0

 .
Let’s write Ueff for small angles, then (dropping the constant.)

Ueff ≈
ω2

2

1− (ξ̇)2

ω2l2

φ2
0 + ω2

24

4 (ξ̇)2

ω2l2
− 1

φ4
0

If (ξ̇)2

ω2l2
≈ 1, then

Ueff ≈
ω2

2

1− (ξ̇)2

ω2l2

φ2
0 + ω2

8 φ4
0.

• Spontaneous symmetry braking.





LECTURE 12
Oscillations with parameters depending on time.

Foucault pendulum.

The opposite situation, when the change of parameters is very slow – adiabatic approxi-
mation.

In rotation
~̇r = ~Ω× ~r.

In our local system of coordinate (not inertial) a radius-vector is

~r = x~ex + y~ey.

So
~̇r = ẋ~ex + ẏ~ey + x~Ω× ~ex + y~Ω× ~ey

I chose the system of coordinate such that ex ⊥ ~Ω. Then

~v2 = ẋ2 + ẏ2 + y2Ω2 cos2 θ + Ω2x2 + 2Ω(xẏ − yẋ) cos θ

For a pendulum we have

x = lφ cosψ, y = lφ sinψ

so

ẋ2 + ẏ2 = l2φ̇2 + l2φ2ψ̇2

xẏ − yẋ = l2φ2ψ̇

and
v2 = l2φ̇2 + l2φ2ψ̇2 + 2Ωl2φ2ψ̇ cos θ + Ω2l2φ2(cos2 ψ + sin2 ψ cos2 θ)

The Lagrangian then is (the gravitation potential energy is mgl(1 − cosφ) ≈ 1
2mglφ

2 =
1
2ml

2ω2φ2, where ω2 = g/l)

L = mv2

2 +mgl cosφ = mv2

2 − 1
2ml

2ω2φ2

• In fact it is not exact as the centripetal force is missing. However, this force is of the
order of Ω2 and we will see, that the terms of that order can be ignored.
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and the Lagrangian equations (ω2 = g/l)
φ̈ = −ω2φ+ φψ̇2 + 2Ωφψ̇ cos θ + Ω2φ(sin2 ψ cos2 θ + cos2 ψ)

2φφ̇ψ̇ + φ2ψ̈ + 2φφ̇Ω cos θ = −1
2Ω2φ2 sin 2ψ sin2 θ

We will see, that ψ̇ ∼ Ω. Then neglecting all terms of the order of Ω2 we find
φ̈ = −ω2φ

ψ̇ = −Ω cos θ
The total change of the angle ψ for the period is

∆ψ = ΩT cos θ = 2π cos θ.
• Geometrical meaning.



LECTURE 13
Oscillations with parameters depending on time.

Foucault pendulum. General case.

13.1. Physics Festival.
• Kapitza pendulum
• Non-newtonian fluid
• Fire Piston
• Pendulum Cart
• Chaldni plate

Figure 1

We want to move a pendulum around the world along some
closed trajectory. The question is what angle the plane of os-
cillations will turn after we return back to the original point?

We assume that the earth is not rotating.
We assume that we are moving the pendulum slowly.
First of all we need to decide on the system of coordinates.

For our the simple case we can do it in the following way.
(a) We choose a global unit vector ẑ. The only requirement

is that the z line does not intersect our trajectory.
(b) After that we can introduce the angles θ and φ in the

usual way. (strictly speaking in order to introduce φ
we also need to introduce a global vector x̂, thus intro-
ducing a full global system of coordinates.)

(c) In each point on the sphere we introduce it’s own sys-
tem/vectors of coordinates êφ, êθ, and n̂, where n̂ is
along the radius-vector ~R, êφ is orthogonal to both n̂
and ẑ, and êθ = n̂× êφ .

We then have
ê2
θ = ê2

φ = n̂2 = 1, êθ · êφ = êθ · n̂ = êφ · n̂ = 0.

Let’s look how the coordinate vectors change when we change a point where we siting.
So let as change our position by a small vector d~r. The coordinate vectors then change by

41
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êθ → êθ + dêθ, etc. Where dêθ, dêφ, and dn̂ will be proportional to d~r. We then see that
êθ · dêθ = êφ · dêφ = n̂ · dn̂ = 0, êθ · dêφ + dêθ · êφ = êθ · dn̂+ dêθ · n̂ = êφ · dn̂+ dêφ · n̂ = 0.
or

dêθ = aêφ + bn̂

dêφ = −aêθ + cn̂

dn̂ = −bêθ − cêφ(13.1)
Where coefficients a, b, and c are linear in d~r.

Let’s now assume, that our d~r is along the vector êφ. Then it is clear, that dn̂ = (d~r·êφ)
R

êφ,
and dêθ = − (d~r·êφ)

R tan θ êφ.
If d~r is along the vector êθ, then dêφ = 0, and dn̂ = (d~r·êθ)

R
êθ.

Collecting it all together we have

dêθ = −(d~r · êφ)
R tan θ êφ −

(d~r · êθ)
R

n̂

dêφ = (d~r · êφ)
R tan θ êθ −

(d~r · êφ)
R

n̂

dn̂ = (d~r · êθ)
R

êθ + (d~r · êφ)
R

êφ

Notice, that these are purely geometrical formulas.
There is more algebraic way to find the coefficients a, b, and c. Consider a vector ~r = Rn̂.

We have d~r = Rdn̂+ n̂dR. Using the last of the equations (13.1) we get d~r = −Rbêθ−Rcêφ+
n̂dR. Multiplying this equation by êθ and by êφ we will find the previous results for b and
c. Now we notice, that our definition of êφ is such, that ẑ · êφ = 0, so ẑ · dêφ = 0. Using the
second of the equations (13.1) we find −aẑ · êθ + cẑ · n̂ = 0. As ẑ · n̂ = cos θ, and ẑ · êθ = sin θ,
we find c = a/ tan θ.

Now let’s consider a pendulum. In our local system of coordinates it’s radius vector is
~ξ = xêθ + yêφ = ξ cosψêθ + ξ sinψêφ.

The velocity is then

~̇ξ = ξ̇(cosψêθ + sinψêφ) + ξψ̇(− sinψêθ + cosψêφ) + ξ(cosψ∂êθ
∂~r

+ sinψ∂êφ
d~r

)d~r
dt
.

When we calculate ~̇ξ2 we only keep terms no more than first order in d~r/dt

~̇ξ2 ≈ ξ̇2 + ξ2ψ̇2 + 2ξ2ψ̇
êφ · ∂êθ
∂~r

d~r

dt
= ξ̇2 + ξ2ψ̇2 + 2ξ2ψ̇

1
R tan θ

êφ · d~r
dt

The potential energy does not depend on ψ, so the Lagrange equation for ψ is simply
d
dt
∂L
∂ψ̇

= 0. Moreover, as ξ is fast when we take the derivative d
dt

we differentiate only ξ. Then

4ξξ̇ψ̇ + 4ξξ̇ 1
R tan θ

êφ · d~r
dt

= 0
so

ψ̇ = − 1
R tan θ

R sin θdφ
dt

= − cos θdφ
dt

Finally,
dψ = − cos θdφ.



LECTURE 14
Oscillations with parameters depending on time.

Parametric resonance.

14.1. Physics Festival.
• Kapitza pendulum
• Non-newtonian fluid
• Fire Piston
• Pendulum Cart
• Chaldni plate

14.2. Foucault pendulum. Last words.
Parallel transport on a sphere:

• What is parallel transport?
• What is straight line?
• Triangle is three points connected by the straight lines.
• We can draw triangle with all angles π/2 degrees.
• Parallel transport a vector along such a triangle.
• Upon returning it will turn π/2.
• The area of such a triangle is 1/8th of the area of the sphere.
• The solid angle is 4π/8 = π/2.

14.3. Parametric resonance. Generalities.
Now we consider a situation when the parameters of the oscillator depend on time and the
frequency of this dependence is comparable to the frequency of the oscillator. We start from
the equation

ẍ = −ω2(t)x,
where ω(t) is a periodic function of time. The interesting case is when ω(t) is almost a
constant ω0 with a small correction which is periodic in time with period T . Then the case
which we are interested in is when 2π/T is of the same order as ω0. We are going to find the
resonance conditions. Such resonance is called “parametric resonance”.

43



44 SPRING 2019, ARTEM G. ABANOV, ADVANCED MECHANICS II. PHYS 303

First we notice, that if the initial conditions are such that x(t = 0) = 0, and ẋ(t = 0) = 0,
then x(t) = 0 is the solution and no resonance happens. This is very different from the case
of the usual resonance.

Let’s assume, that we found two linearly independent solutions x1(t) and x2(t) of the
equation. All the solutions are just linear combinations of x1(t) and x2(t).

If a function x1(t) is a solution, then function x1(t + T ) must also be a solution, as T is
a period of ω(t). It means, that the function x1(t + T ) is a linear combination of functions
x1(t) and x2(t). The same is true for the function x2(t+ T ). So we have(

x1(t+ T )
x2(t+ T )

)
=
(
a b
c d

)(
x1(t)
x2(t)

)
We can always choose such x1(t) and x2(t) that the matrix is diagonal. In this case

x1(t+ T ) = µ1x1(t), x2(t+ T ) = µ2x2(t)
so the functions are multiplied by constants under the translation on one period. The most
general functions that have this property are

x1(t) = µ
t/T
1 X1(t), x2(t) = µ

t/T
2 X2(t),

where X1(t), and X2(t) are periodic functions of time.
The numbers µ1 and µ2 cannot be arbitrary. The functions x1 and x2 satisfy the Wron-

skian equation
W (t) = ẋ1x2 − ẋ2x1 = const

So on one hand W (t+ T ) = µ1µ2W (t), on the other hand W (t) must be constant. So
µ1µ2 = 1.

Now, if x1 is a solution so must be x∗1. It means that either both µ1 and µ2 are real, or
µ∗1 = µ2. In the later case we have |µ1| = |µ2| = 1 and no resonance happens. In the former
case we have µ2 = 1/µ1 (either both are positive, or both are negative). Then we have

x1(t) = µt/TX1(t), x2(t) = µ−t/TX2(t).
We see, that one of the solutions is unstable, it increases exponentially with time. This
means, that a small initial deviation from the equilibrium will exponentially grow with time.
This is the parametric resonance.

14.4. Resonance.

Figure 1

Let’s now consider the following dependence of ω on time
ω2 = ω2

0(1 + h cosωpt)
where h� 1.

• The most interesting case is when ωp ∼ 2ω0. Explain.
So I will take ωp = 2ω0 + ε, where ε � ω0. The equation of
motion is
ẍ+ ω2

0x[1 + h cos(2ω0 + ε)t] = 0
(Mathieu’s equation)

We seek the solution in the form
x = a(t) cos(ω0 + ε/2)t+ b(t) sin(ω0 + ε/2)t
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and retain only the terms first order in ε assuming that ȧ ∼ εa and ḃ ∼ εb. We then substitute
this solution into the equation use the identity

cos(ω0 + ε/2)t cos(2ω0 + ε)t = 1
2 cos 3(ω0 + ε/2)t+ 1

2 cos(ω0 + ε/2)t

and neglect the terms with frequency ∼ 3ω0 as they are off the resonance. The result is

−ω0(2ȧ+ bε+ 1
2hω0b) sin(ω + ε/2)t+ ω0(2ḃ− aε+ 1

2hω0a) cos(ω + ε/2)t = 0

So we have a pair of equations

2ȧ+ bε+ 1
2hω0b = 0

2ḃ− aε+ 1
2hω0a = 0

We look for the solution in the form a, b ∼ a0, b0e
st, then

2sa0 + b0ε+ 1
2hω0b0 = 0, 2sb0 − a0ε+ 1

2hω0a0 = 0.

The compatibility condition gives

s2 = 1
4
[
(hω0/2)2 − ε2

]
.

Notice, that es is what we called µ before. The condition for the resonance is that s is
real. It means that the resonance happens for

−1
2hω0 < ε <

1
2hω0

• The range of frequencies for the resonance depends on the amplitude h.
• The amplification s, also depends on the amplitude h.
• In case of dissipation the solution acquires a decaying factor e−λt, so s should be
substituted by s− λ. Then in order for the instability to occur we must have s > λ
so the range of instability is given by 1

4 [(hω0/2)2 − ε2] > λ2:

−
√

(hω0/2)2 − 4λ2 < ε <
√

(hω0/2)2 − 4λ2

• At finite dissipation the parametric resonance requires finite amplitude h = 4λ/ω0.
• Other resonances occur ω0/ωp = n/2.
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Figure 2



LECTURE 15
Oscillations of an infinite series of springs. Oscillations

of a rope. Phonons.

15.1. Physics Festival.
• Kapitza pendulum
• Non-newtonian fluid
• Fire Piston
• Pendulum Cart
• Chaldni plate

15.2. Series of springs.
Consider one dimension string of N masses m connected with identical springs of spring
constants k. The first and the last masses are connected by the same springs to a wall. The
question is what are the normal modes of such system?

• The difference between the infinite number of masses and finite, but large — zero
mode.

This system has N degrees of freedom, so we must find N modes. We call xi the dis-
placement of the ith mass from its equilibrium position. The Lagrangian is:

L =
N∑
i=1

mẋ2
i

2 − k

2

N+1∑
i=0

(xi − xi+1)2, x0 = xN+1 = 0.

15.2.1. First solution

The matrix −ω2kij + uij is

−ω2kij + uij =


−mω2 + 2k −k 0 . . . . . .
−k −mω2 + 2k −k 0 . . .
0 −k −mω2 + 2k −k . . .
. . . . . . . . . . . . . . .


This is N ×N matrix. Let’s call its determinant DN . We then see
DN = (−mω2 + 2k)DN−1 − k2DN−2, D1 = −mω2 + 2k, D2 = (−mω2 + 2k)2 − k2
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This is a linear difference equation with constant coefficients. The solution should be of the
form DN = aN . Then we have

a2 = (−mω2 + 2k)a− k2, a =
−mω2 + 2k ± i

√
mω2(4k −mω2)

2 .

So the general solution and initial conditions are

DN = AaN−1 + ĀāN−1, A+ Ā = −mω2 + 2k, Aa+ Āā = (−mω2 + 2k)2 − k2.

The solution is A = a2

a−ā . Now in order to find the normal frequencies we need to solve the
following equation for ω.

DN = a2

a− ā
aN−1 − ā2

a− ā
āN−1 = 0, or

(
a

ā

)N+1
= 1.

We now say that a = keiφ, (|a|2 = k2) where cosφ = −mω2−2k
2k then

e2iφ(N+1) = 1, 2φ(N + 1) = 2πn, where n = 1 . . . N.

So we have

cosφ = cos πn

N + 1 = −mω
2 − 2k

2k , ω2
n = 4 k

m
sin2 πn

2(N + 1) .

15.2.2. Second solution.

From the Lagrangian we find the equations of motion

ẍj = − k
m

(2xj − xj+1 − xj−1), x0 = xN+1 = 0.

We look for the solution in the form

xj = sin(βj) sin(ωt), sin β(N + 1) = 0.

Substituting this guess into the equation we get

−ω2 sin(βj) = − k
m

(2 sin(βj)− sin β(j + 1)− sin β(j − 1))

= − k
m
=
(
2eijβ − ei(j+1)β − ei(j−1)β

)
= − k

m
=eijβ

(
2− eiβ − e−iβ

)
= k

m
=eijβ

(
eiβ/2 − e−iβ/2

)2

= −4 k
m
=eijβ sin2(β/2) = −4 k

m
sin(jβ) sin2(β/2).

So we have

ω2 = 4 k
m

sin2(β/2),

but β must be such that sin β(N + 1) = 0, so β = πn
N+1 , and we have

ω2 = 4 k
m

sin2 πn

2(N + 1) , n = 1, . . . , N



LECTURE 15. OSCILLATIONS OF AN INFINITE SERIES OF SPRINGS. OSCILLATIONS OF A ROPE. PHONONS.49
15.3. A rope.

The potential energy of a (2D) rope of shape y(x) is T
∫ L

0

√
1 + y′2dx ≈ T

2
∫ L

0 y′2dx. The
kinetic energy is

∫ L
0

ρ
2 ẏ

2dx, so the Lagrangian is

L =
∫ L

0

(
ρ

2 ẏ
2 − T

2 y
′2
)
dx, y(0) = y(L) = 0.

In order to find the normal modes we need to decide on the coordinates in our space of
functions y(x, t). We will use a standard Fourier basis sin kx and write any function as

y(x, t) =
∑
k

Ak(t) sin kx, sin kL = 0

The constants Ak(t) are the coordinates in the Fourier basis. We then have

L = L

2
∑
k

(
ρ

2Ȧ
2
k −

T

2 k
2A2

k

)
We see, that it is just a set of decoupled harmonic oscillators and k just enumerates them.
The normal frequencies are

ω2
k = T

ρ
k2, ω =

√
T

ρ
k.

• We also see, that the wavelength λ = 2π/k. So using ω = 2πf we find that λf =√
T/ρ. So the speed of these waves is

c2 = T/ρ.





LECTURE 16
Motion of a rigid body. Kinematics. Kinetic energy.

Momentum. Tensor of inertia.

16.1. Kinematics.

Figure 1

We will use two different system of coordinates XY Z — fixed,
or external inertial system of coordinates, and xyz the moving,
or internal system of coordinates which is attached to the body
itself and moves with it.

Let’s ~R be radius vector of the center of mass O of a body
with respect to the external frame of reference, ~r be the radius
vector of any point P of the body with respect to the center of
mass O, and ~p the radius vector of the point P with respect to
the external frame of reference: ~p = ~R+~r. For any infinitesimal
displacement d~p of the point P we have

d~p = d~R + d~r = d~R + d~φ× ~r.
Or dividing by dt we find the velocity of the point P as

~v = ~V + ~Ω× ~r, ~v = d~p
dt
, ~V = d~R

dt
, ~Ω = d~φ

dt
.

• Notice, that φ is not a vector, while d~φ is.
In the previous calculation the fact that O is a center of mass has not been used, so for any
point O′ with a radius vector ~R′ = ~R + ~a we find the radius vector of the point P to be
~r′ = ~r−~a, and we must have ~v = ~V ′+ ~Ω′×~r′. Now substituting ~r = ~r′+~a into ~v = ~V + ~Ω×~r
we get ~v = ~V + ~Ω× ~a+ ~Ω× ~r′. So we conclude that

~V ′ = ~V + ~Ω× ~a, ~Ω′ = ~Ω.
The last equation shows, that the vector of angular velocity is the same and does not depend
on the particular moving system of coordinates. So ~Ω can be called the angular velocity of
the body.

If at some instant the vectors ~V and ~Ω are perpendicular for some choice of O, then they
will be perpendicular for any other O′: ~Ω · ~V = ~Ω · ~V ′. Then it is possible to solve the equation

51



52 SPRING 2019, ARTEM G. ABANOV, ADVANCED MECHANICS II. PHYS 303

for ~a
~V + ~Ω× ~a = 0.

These are three inhomogeneous linear equations for the components of the vector ~a.
If we take the dot product of the above equation with ~Ω, we find that ~Ω · ~V = 0, this is

the requirement that the above equation has a solution (rhs must be orthogonal to the zero
modes).

If we multiply the above equation by ~V “vectorly” we find

0 = ~Ω(~V · ~a)− ~a(~V · ~Ω) = ~Ω(~V · ~a),

so ~V · ~a = 0. So the vector ~a must have the form
~a = α~Ω× ~V + β~Ω.

Finally, substituting this form of ~a into the main equation we get

0 = ~V + α~Ω× [~Ω× ~V ] + β~Ω× ~Ω = ~V + α~Ω(~Ω · ~V )− α~V Ω2 = ~V
(
1− αΩ2

)
So we have αΩ2 = 1 and β can be any number.

~a =
~Ω× ~V

Ω2 + β~Ω.

So in this case there exist a point/axis (it may be outside of the body) with respect to which
the whole motion is just a rotation. This line which is parallel to ~Ω is called “instantaneous
axis of rotation”. (In the general case (when ~Ω · ~V 6= 0) the instantaneous axis can be made
parallel to ~V .)

• In general both the magnitude and the direction of ~Ω are changing with time, so is
the “instantaneous axis of rotation”.
• If one finds two points which have zero velocity at this instant, then the instantaneous
axis of rotation is the straight line through these two points.
• Examples.

16.2. Kinetic energy.
The total kinetic energy of a body is the sum of the kinetic energies of its parts. Lets take
the origin of the moving system of coordinates to be in the center of mass. Then

K = 1
2
∑

mαv
2
α = 1

2
∑

mα

(
~V + ~Ω× ~rα

)2
= 1

2
∑

mα
~V 2 +

∑
mα

~V · ~Ω× ~rα + 1
2
∑

mα

[
~Ω× ~rα

]2
= MV 2

2 + ~V · ~Ω×
∑

mα~rα + 1
2
∑

mα

[
~Ω× ~rα

]2
For the center of mass ∑mα~rα = 0 and we have

K = MV 2

2 + 1
2
∑

mα

(
~Ω2~r2

α − (~Ω · ~rα)2
)

= MV 2

2 + IijΩiΩj

2 ,

where
Iij =

∑
mα

(
δij~r

2
α − riαrjα

)
.

Iij is the tensor of inertia. This tensor is symmetric and positive definite.
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16.3. Angular momentum
The origin is at the center of mass. So we have
~M =

∑
mα~rα × ~vα =

(∑
mα~rα

)
× ~V +

∑
mα~rα × (~Ω× ~rα) =

∑
mα

(
r2
α
~Ω− ~rα(~rα · ~Ω)

)
Writing this in components we have

Mi =
∑

mα

(
δij~r

2
α − riαrjα

)
Ωj

or
Mi = IijΩj.

• In general the direction of angular momentum ~M and the direction of the angular
velocity ~Ω do not coincide.

16.4. Tensor of inertia.
Tensor of inertia is a symmetric tensor of rank two. As any such tensor it can be re-
duced to a diagonal form by an appropriate choice of the moving axes. Such axes are
called the principal axes of inertia. The diagonal components I1, I2, and I3 are called the
principal moments of inertia.

• Notice, that these axes are “attached” to the body and thus rotate with the body.
In this axes the kinetic energy is simply

K = I1Ω2
1

2 + I2Ω2
2

2 + I3Ω2
3

2 .

(a) If all three principal moments of inertia are different, then the body is called “asym-
metrical top”.

(b) If two of the moments coincide and the third is different, then it is called “symmetrical
top”.

(c) If all three coincide, then it is “spherical top”.
For any plane figure if z is perpendicular to the plane, then I1 = ∑

mαy
2
α, I2 = ∑

mαx
2
α,

and I3 = ∑
mα(x2

α + y2
α) = I1 + I2. If symmetry demands that I1 = I2, then 1

2I3 = I1.
Example: a disk, a square.

If the body is a line, then (if z is along the line) I1 = I2, and I3 = 0. Such system is
called “rotator”.





LECTURE 17
Motion of a rigid body. Rotation of a symmetric top.

Euler angles.

Kinematics:

• Spherical top.
• Arbitrary top rotating around one of its principal axes.
• Symmetric top.

Figure 1

Consider a free rotation of a symmetric top Ix = Iy 6= Iz,
where x, y, and z are the principal axes. The direction of the
angular momentum does not coincide with the direction of any
principle axes. Let’s say, that the angle between ~M and the
moving axes z at some instant is θ. We chose as the axis y the
one that is in plane with the two vectors ~M and ẑ.

During the motion the total angular momentum is con-
served.

The whole motion can be thought as two rotations one the
rotation of the body around the axes z and the other, called
precession, is the rotation of the axis z around the direction of
the vector ~M – we call its direction Ẑ = ~M/| ~M |.

We can think of vector ~Ω in two different ways

~Ω = ẑΩz + ŷΩy(17.1)

~Ω =
~M

M
Ωpr + ẑΩ̃z(17.2)

and angular momentum

(17.3) ~M = ΩyIyŷ + ΩzIz ẑ,

Multiplying (17.3) by ẑ (at this instant of time) we get

Ωz = Mz

Iz
= M

Iz
cos θ.
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In order to find the angular velocity of precession we multiply (17.2) and (17.3) by ŷ and
get

Ωy = ŷ · ~M
M

Ωpr and ŷ · ~M = IyΩy

or substituting ŷ · ~M from the second equation into the first

Ωy = Iy
M

ΩyΩpr.

This equation has two solutions Ωy = 0 – which corresponds to ~M ‖ ẑ, or if Ωy 6= 0

Ωpr = M

Iy
.

17.1. Euler’s angles
The total rotation of a rigid body is described by three angles. There are different ways to
parametrize rotations. Here we consider what is called Euler’s angles.

The fixed coordinates are XY Z, the moving coordinates xyz. The plane xy intersects
the plane XY along the line ON called the line of nodes.

Figure 2

The angle θ is the angle between the Z and z axes.
The angle φ is the angle between the X axes and the
line of nodes, and the angle ψ is the angle between
the x axes and the line of nodes.

Initially the axes XY Z and xyz coincide. Let’s
denote Ôξ̂(α) a rotation around a unit vector ξ̂ on the
angle α. Then in order to get the orientation on the
picture we need to perform three separate rotations

Ôẑ(ψ) ◦ ÔẐ(φ) ◦ ÔX̂(θ)

The angle θ is from 0 to π, the φ and ψ angles are
from 0 to 2π.

I need to find the components of the angular veloc-
ity ~Ω in themoving frame in terms of time derivative
of the angles θ̇, φ̇, and ψ̇.

(a) The vector ~̇θ is along the line of nodes, so its components along x, y, and z are

θ̇x = θ̇ cosψ
θ̇y = −θ̇ sinψ
θ̇z = 0

(b) The vector ~̇φ is along the Z direction, so its component along ẑ, x̂, and ŷ are (we
start from ẑ for convenience)

φ̇z = φ̇ cos θ
φ̇x = φ̇ sin θ sinψ
φ̇y = φ̇ sin θ cosψ
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(c) The vector ~̇ψ is along the z direction, so its component along ẑ, x̂, and ŷ are (we
start from ẑ for convenience)

ψ̇z = ψ̇

ψ̇x = 0
ψ̇y = 0(17.4)

We now collect all angular velocities along each axis as Ωx = θ̇x + φ̇x + ψ̇x etc. and find
Ωx = θ̇ cosψ + φ̇ sin θ sinψ
Ωy = −θ̇ sinψ + φ̇ sin θ cosψ
Ωz = φ̇ cos θ + ψ̇

These equations allow us:
• if we know the principal moments of inertia, to express the kinetic energy K =

1
2IxΩ

2
x + 1

2IyΩ
2
y + 1

2IzΩ
2
z in terms of the derivative of the coordinates and coordinates

θ, φ, and ψ. Or
• first solve problem in the moving system of coordinates, find Ωx, Ωy, and Ωz, and
then calculate θ̇, φ̇, and ψ̇.

17.2. Symmetric top again.
Consider the symmetric top again Iy = Ix. We take Z to be the direction of the angular
momentum. We can take the axis x coincide with the line of nodes. Then ψ = 0 (but ψ̇ 6= 0!),
and we have

Ωx = θ̇

Ωy = φ̇ sin θ
Ωz = φ̇ cos θ + ψ̇

The components of the angular momentum are
Mx = IxΩx = Ixθ̇

My = IyΩy = Iyφ̇ sin θ
Mz = IzΩz

On the other hand
Mx = 0
My = M sin θ
Mz = M cos θ

Comparing those we find

θ̇ = 0, Ωpr = φ̇ = M

Ix
, Ωz = M

Iz
cos θ.





LECTURE 18
Symmetric top in gravitational field.

18.1. The Lagrangian.
The angles are unconstrained and change 0 < θ < π, 0 < ψ, φ < 2π.

We want to consider the motion of the symmetric top (Ix = Iy) whose lowest point is
fixed. We call this point O. The line ON is the line of nodes.

• Line of nodes is an intersection between XY and xy planes.
The Euler angles θ, φ, and ψ fully describe the orientation of the top.

Instead of defining the tensor of inertia with respect to the center of mass, we will define
it with respect to the point O. The principal axes with trough this point are parallel to the
ones through the center of mass. The principal moment Iz does not change under such shift,

Figure 1
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the principal moment with respect to the axes x and y become by I = Ix + ml2, where l is
the distance from the point O to the center of mass.

Ωx = θ̇ cosψ + φ̇ sin θ sinψ
Ωy = −θ̇ sinψ + φ̇ sin θ cosψ
Ωz = φ̇ cos θ + ψ̇

The kinetic energy of the symmetric top is

K = Iz
2 Ω2

z + I

2
(
Ω2
x + Ω2

y

)
= Iz

2 (ψ̇ + φ̇ cos θ)2 + I

2(θ̇2 + φ̇2 sin2 θ)

The potential energy is simply mgl cos θ, so the Lagrangian is

L = Iz
2 (ψ̇ + φ̇ cos θ)2 + I

2(θ̇2 + φ̇2 sin2 θ)−mgl cos θ.

18.2. The solution.
We see that the Lagrangian does not depend on φ and ψ – this is only correct for the
symmetric top. The corresponding momenta MZ = ∂L

∂φ̇
and M3 = ∂L

∂ψ̇
are conserved.

M3 = Iz(ψ̇ + φ̇ cos θ), MZ = (I sin2 θ + Iz cos2 θ)φ̇+ Izψ̇ cos θ.
The energy is also conserved

E = Iz
2 (ψ̇ + φ̇ cos θ)2 + I

2(θ̇2 + φ̇2 sin2 θ) +mgl cos θ.

The values of MZ , M3, and E are given by the initial conditions.
So we have three unknown functions θ(t), φ(t), and ψ(t) and three conserved quantities.

The conservation laws then completely determine the whole motion.
From equations for MZ and M3 we have

φ̇ = MZ −M3 cos θ
I sin2 θ

ψ̇ = M3

I3
− cos θMZ −M3 cos θ

I sin2 θ

We then substitute the values of the φ̇ and ψ̇ into the expression for the energy and find

E ′ = 1
2Iθ̇

2 + Ueff (θ),

where

E ′ = E − M2
3

2Iz
−mgl, Ueff (θ) = (MZ −M3 cos θ)2

2I sin2 θ
−mgl(1− cos θ).

This is an equation of motion for a 1D motion, so we get

t =
√
I

2

∫ dθ√
E ′ − Ueff (θ)

.

This is an elliptic integral.
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The effective potential energy goes to infinity when θ → 0, π. The function θ oscillates

between θmin and θmax which are the solutions of the equation E ′ = Ueff (θ). These oscilla-
tions are called nutations. As φ̇ = MZ−M3 cos θ

I sin2 θ
the motion depends on whether MZ −M3 cos θ

changes sign in between θmin and θmax.

18.3. Stability.
We can find a condition for the stable rotation about the Z axes. For such rotation M3 =
MZ = M , so the effective potential energy is

Ueff = M2

2I
sin2(θ/2)
cos2(θ/2) − 2mgl sin2(θ/2) ≈

(
M2

8I −
1
2mgl

)
θ2,

where the last is correct for small θ. We see, that the rotation is stable if M2 > 4Imgl, or,
as M = IzΩz

Ω2
z >

4Imgl
I2
z

.





LECTURE 19
Rolling coin. An example of the rigid body dynamics.

Figure 1

In this lecture we consider the dynamics of the follow-
ing object:

A uniform thin disc (a coin) of massM and radius
R rolls without slipping on a horizontal plane. The
disc makes an angle α with the plane, the center of
the disc C moves around the horizontal circle with a
constant speed v. The axis of symmetry of the disc
CO intersects the horizontal plane in the point O.
The point O is stationary.

• Intuitively clear, that this problem is overde-
termined. We want to see why.

First, some geometrical facts

|OC| = R tanα, |OA| = R

cosα, |OC ′| = |OC| sinα = R
sin2 α

cosα , |CC ′| = R sinα.

This is a symmetric top, so we can chose the internal x and y axes anywhere in the plane
orthogonal to the internal z axis.

We chose the internal system of coordinates xyz as shown on the figure. In this system
the principal moments of inertia are

Iz = 1
2MR2, Iy = Ix = 1

4MR2 +M |OC|2 = MR2
(1

4 + tan2 α
)

19.1. Kinematics.
Simple way. According to the problem statement the points O and A are stationary at this
moment. So the are on the instantaneous axis of rotation. It means that the vector ~Ω is
along this axis.

The point C has a velocity v. For any point ~r of a rotating body the velocity is ~v = ~Ω×~r.
So we see, that v = Ω|CC ′|, or

Ω = v

R

1
sinα.

So we know both the direction and the magnitude of the vector ~Ω.
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In the internal system of coordinates xyz we then have

Ωz = −Ω sinα = − v
R
, Ωy = Ω cosα = v

R

cosα
sinα .

Euler angles. We can find the same result from the Euler angles. As this is symmetric top,
we can set ψ = 0, but we need to know θ, θ̇, φ̇, and ψ̇. According to the figure the Euler
angle θ = α, so θ̇ = 0. As the velocity of the point C is v, we can write φ̇|OC ′| = v, so

φ̇ = v

R

cosα
sin2 α

.

The Euler ψ̇ must be found from non-slipping condition. This condition means that the
velocity of the point A is zero. So we can write φ̇|OA|+ ψ̇R = 0. So

ψ̇ = − φ̇

cosα = − v
R

1
sin2 α

.

(the − sign is important here!)
Now we use our relations:

Ωx = θ̇ cosψ + φ̇ sin θ sinψ = 0
Ωy = −θ̇ sinψ + φ̇ sin θ cosψ = v

R

cosα
sinα

Ωz = φ̇ cos θ + ψ̇ = v
R

cos2 α
sin2 α

− v
R

1
sin2 α

= − v
R

These are exactly the results we got earlier.

19.2. Dynamics.
The main dynamic equations are d ~M

dt
= ~τ and ~F = M~a. Let’s start with the angular

momentum.
In the internal system of coordinates the angular momentum at this moment is

~M = IzΩz ẑ + IyΩyŷ.

This is a vector of constant magnitude which rotates around the Ẑ axis with angular velocity
φ̇. So we write

~̇M = φ̇Ẑ × ~M.

We compute the RHS at this moment of time
~̇M = φ̇Ẑ × (IzΩz ẑ + IyΩyŷ) = x̂φ̇ (−IyΩy cosα + IzΩz sinα)

Using our kinematic relations we get

~̇M = − v
2

R2
cosα
sin3 α

(
Iz sin2 α + Iy cos2 α

)
x̂.

There are three forces that act on the coin: the gravity Mg applied to the point C,
pointing down; the normal force N applied to the point A and pointing up; and the friction
force F applied to the point A and pointing towards point O. As the center of mass does not
move in the Z direction, the normal force and the gravity must compensate each other, so
N = Mg (N is up). We want to compute the total torque with respect to point O acting on
the coin. The torque of a force ~F applied at point ~r is ~τ = ~r× ~F . So the torque of the friction
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force is zero. The torque of the gravity is ~τg = − ~OC ×MgẐ = x̂|OC ′|Mg = x̂RMg sin2 α
cosα .

The torque of the normal force is ~τN = −Mg|OA|x̂. So the total torque is

~τ = RMg

(
sin2 α

cosα −
1

cosα

)
x̂ = −MgR cosαx̂.

Notice, that this result would be much easier to obtain if we simply computed the torques
with respect to point A, but this is not a trivial statement, as point A is not inertial.

Thus we have
v2

R2
cosα
sin3 α

(
Iz sin2 α + Iy cos2 α

)
= MgR cosα

Substituting here the values of Iy and Iz we get
1
4
v2

R

cosα
sin3 α

(
1 + 5 sin2 α

)
= g cosα.

• Notice, that α = π/2 (or cosα = 0) is a solution for any v and R – as expected.
For cosα 6= 0 we get

1
4
v2

R

(
1 + 5 sin2 α

)
= g sin3 α.

• So v, R, and α cannot be arbitrary!!!

19.3. Friction force.
The center of mass of the coin moves around the circle of radius |OC ′| with velocity v, so its
acceleration is v2

|OC′| = v2

R
cosα
sin2 α

The force that provides this acceleration is the friction force,
so

F = M
v2

R

cosα
sin2 α

.

However, this force cannot be larger than µN = µMg, so we have

µg >
v2

R

cosα
sin2 α

.

Using the previous result v2

Rg
= 4 sin3 α

1+5 sin2 α
we get

4 cosα sinα
1 + 5 sin2 α

< µ

19.4. Lagrangian dynamics.
In order to study the full Lagrangian dynamics of the coin we first must assume, that the non-
slipping condition is valid at all times – otherwise we will have dissipation and the Lagrangian
method would not work. Second we should not assume that the angle α is constant in time,
so the kinetic energy term will have α̇.

But there is more subtle issue. Our coordinate are α, φ, ψ, X, and Y , where X and Y
are the position of the coin center of mass (its Z coordinate is R cosα – not an independent
variable.) The Lagrangian will not explicitly depend on X and Y , it only depends on the
velocity v2. However, the velocity is also not independent and is given by φ̇. So there are
only three variables – the Euler angles.





LECTURE 20
Motion of a rigid body. Euler equations. Stability of

asymmetric top.

20.1. Euler equations.
Let’s write the vector ~M in the following form

~M = IxΩxx̂+ IyΩyŷ + IzΩz ẑ.

I want to use the fact that the angular momentum is conserved ~̇M = 0. In order to
differentiate the above equation I need to use ˙̂x = ~Ω× x̂ etc, then

0 = ~̇M = IxΩ̇xx̂+ IyΩ̇yŷ + IzΩ̇z ẑ + IxΩx
~Ω× x̂+ IyΩy

~Ω× ŷ + IzΩz
~Ω× ẑ.

Multiplying the above equation by x̂, will find

0 = IxΩ̇x + IyΩy
~Ω · [ŷ × x̂] + IzΩz

~Ω · [ẑ × x̂],
or

IxΩ̇x = (Iy − Iz)ΩyΩz.

Analogously for ŷ and ẑ, and we get the Euler equations:
IxΩ̇x = (Iy − Iz)ΩyΩz

IyΩ̇y = (Iz − Ix)ΩzΩx

IzΩ̇z = (Ix − Iy)ΩxΩy

One can immediately see, that the energy is conserved.
For a symmetric top Iy = Ix we find that Ωz = const., then denoting ω = Ωz

Iz−Ix
Ix

we get

Ω̇x = −ωΩy

Ω̇y = ωΩx

The solution is
Ωx = A cosωt, Ωy = A sinωt.

So the vector ~Ω rotates around the z axis with the frequency ω. So does the vector ~M – this
is the picture in the moving frame of reference. It is the same as the one before.
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Let’s check it. Using Euler angles we can write with respect to some external system of
coordinates.

Ωx = θ̇ cosψ + φ̇ sin θ sinψ = A cosωt
Ωy = −θ̇ sinψ + φ̇ sin θ cosψ = A sinωt
Ωz = φ̇ cos θ + ψ̇ = Ωz

Multiplying the first equation by cosψ, the second by sinψ and subtracting one from another
we get

θ̇ = A cos(ψ + ωt).

The external system is not well defined and we have a freedom to chose one which is the
most convenient. So let’s chose the one where θ̇ = 0. Such system does not necessarily exist,
so we must check that this guess is consistent with the rest of full set of equations.

The requirement θ̇ = 0 means

ψ = π/2− ωt.

The first two equations then give the same relation

φ̇ sin θ = A

and the third one gives

φ̇ cos θ = Ωz + ω = Ωz
Iz
Ix
,

so we see, that from these two equations tan θ = AIx
ΩzIz is indeed a constant, so θ̇ = 0 is

consistent. Moreover, as A =
√

Ω2
x + Ω2

y = Ω⊥ we see, that tan θ = IxΩ⊥
IzΩz = M⊥

Mz
as it should

be, because ~M is constant.
We also see, that

Ωpr = φ̇ = ΩzIz
cos θ

1
Ix

= Mz

cos θ
1
Ix

= M

Ix

20.2. Stability of the free rotation of a asymmetric top.
• Different meaning of stability. Static stability and dynamic stability.
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Conservation of energy and the magnitude of the total angular momentum read
IxΩ2

x

2 +
IyΩ2

y

2 + IzΩ2
z

2 = E

I2
xΩ2

x + I2
xΩ2

x + I2
xΩ2

x = M2

In terms of the components of the angular momentum these equations read
M2

x

2Ix
+
M2

y

2Iy
+ M2

z

2Iz
= E

M2
x +M2

y +M2
z = M2

The first equation describes an ellipsoid with the semiaxes
√

2IxE,
√

2IyE, and
√

2IzE.
The second equation describes a sphere of a radius M . The initial conditions give us E and
M , the true solution must satisfy the conservation lows at all times. So the vector ~M will lie
on the lines of intersection of the ellipsoid, and sphere. Notice, how different these lines are.





LECTURE 21
Statics.

Static conditions:
• Sum of all forces is zero. ∑ ~Fi = 0.
• Sum of all torques is zero: ∑~ri × ~Fi = 0.

If the sum of all forces is zero, then the torque condition is independent of where the
coordinate origin is. ∑

(~ri + ~a)× ~Fi =
∑

~ri × ~Fi + ~a×
∑

~Fi
Examples
• A bar on two supports.
• A ladder in a corner.
• A block with two legs moving on the floor with µ1 and µ2 coefficients of friction.
• A brake.

A problem for students in class:
• A bar on three supports.

Elastic deformations:
• Continuous media. Scales.
• Small, only linear terms.
• No nonelastic effects.
• Static.
• Isothermal.

Definition of derivatives.
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LECTURE 22
Strain and Stress.

22.1. Einstein notations
• Einstein notations. Divergence etc.

22.2. Strain
Let the unstrained lattice be given positions xi and the strained lattice be given positions
x′i = xi + ui. The distance dl between two points in the unstrained lattice is given by
dl2 = dx2

i . The distance dl′2 between two points in the strained lattice is given by

dl′2 = dx′2i = (dxi + dui)2 = dx2
i + 2dxidui + du2

i

= dl2 + 2 ∂ui
∂xk

dxidxk + ∂ui
∂xj

∂ui
∂xk

dxjdxk

= dl2 + 2uikdxidxk,(22.1)

where

(22.2) uik = 1
2

(
∂ui
∂xk

+ ∂uk
∂xi

+ ∂ul
∂xi

∂ul
∂xk

)

Normally we will take only the case of small strains and consider only linear approximation.
Small strains do not mean, that ~u is small, but it does mean that the derivatives ∂ui/∂xj are
small. Then we can use

(22.3) uik ≈
1
2

(
∂ui
∂xk

+ ∂uk
∂xi

)
.

In the linear approximation we can also write

dx′i = (δij + uij) dxj.

This can be checked by using the above to compute dl′2 and see, that the result coincides
with (22.1) in the linear approximation.
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We can diagonalize the real symmetric uik, and get orthogonal basis set. In that local
frame (1, 2, 3) have dx′1 = dx1(1 + u11), etc. Hence the new volume is given by

dV ′ = dx′1dx
′
2dx

′
3 ≈ dx1dx2dx3(1 + u11 + u22 + u33)

= dV (1 + uii),(22.4)
where the trace uii is invariant to the coordinate system used. Hence the fractional change
in the volume is given by

(22.5) δ(dV )
dV

= uii.

We also see, that in the linear approximation
dui = dx′i − dxi = uijdxj,

or ui =
∫

Γ uijdxj.

22.3. Stress
The forces are considered to be short range.

Consider a volume V that is acted on by internal stresses. The force on it due to the
internal stresses is given by

(22.6) Fi =
∫ dFi
dV

dV =
∫
FidV.

However, because the forces are short-range it should also be possible to write them as an
integral over the surface element dSi = nidS, where n̂ is the outward normal (L&L use dfi
for the surface element). Thus we expect that

(22.7) Fi =
∫
σijdSj

for some σij. Thinking of it as a set of three vectors (labeled by i) with vector index j, we
can apply Gauss’s Theorem to rewrite this as

(22.8) Fi =
∫ ∂σij
∂xj

dV,

so comparison of the two volume integrals gives

(22.9) Fi = ∂σij
∂xj

.

Because there are no self-forces (by Newton’s Third Law), these forces must come from
material that is outside V .

In equilibrium when only the internal stresses act we have Fi = ∂σij
∂xj

= 0. If there is a
long-range force, such as gravity acting, with force F g

i = ρgi, where ρ is the mass density and
gi is the gravitational field, then in equilibrium Fi+F g

i = 0. This latter case is important for
objects with relatively small elastic constant per unit mass, because then they must distort
significantly in order to support their weight.

When no surface force is applied, the stress at the surface is zero. When there is a surface
force Pi per unit area, this determines the stress force σijn̂j, so
(22.10) Pi = σijn̂j



LECTURE 22. STRAIN AND STRESS. 75
If the surface force is a pressure, then Pi = −Pn̂i = σijn̂j. The only way this can be true for
any n̂ is if
(22.11) σij = −Pδij.

Just as the force due to the internal stresses should be written as a surface integral, so
should the torque. Each of the three torques is an antisymmetric tensor, so we consider

Mik =
∫

(Fixk − Fkxi)dV =
∫ (

∂σij
∂xj

xk −
∂σkj
∂xj

xi

)
dV

=
∫ (

∂(σijxk)
∂xj

− ∂(σkjxi)
∂xj

− (σik − σki)
)
dV

=
∫

(σijxk − σkjxi)dSj −
∫

(σik − σki)dV.(22.12)

To eliminate the volume term we require that
(22.13) σik = σki.





LECTURE 23
Work, Stress, and Strain.

In the last lecture we introduced strain and stress tensors.
If a deformation of a body is described by a vector field ~u(~r) – a point ~r of an unstrained

body is shifted by vector ~u – then, in the linear approximation the strain tensor is given by

uij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.

In the linear approximation, it has the following properties
(a) uij = uji – this is correct for non-linear also.
(b) dδV

dV
= uii, where uii = trû.

(c) ui =
∫

Γ uijdxj

The stress tensor σij describes the internal elastic forces.
(a) σij = σji.
(b) The force on the internal volume dV is fi = ∂σij

∂xj
dV .

(c) The force on the surface element d~S is fi = σijdSj.
This lecture we want to find a connection between the stress and the strain tensors. We

are working in a linear and local approximation, so the connection must be linear and have
a form

uij = Dijklσkl,

where Dijkl is a material dependent local tensor of the fourth rank. Not all elements of this
tensor are independent especially if the material is uniform and isotropic. Moreover, the
requirement of stability of the equilibrium (when uij = 0) must lead to some inequalities
between the elements of the tensor D. As it is a tensor of the fourth rank it is very tedious
to analyze. So instead we will work around it.

23.1. Work against Internal Stresses
Let’s imagine an experiment when we want to slightly change the field ~u(~r) while keeping
the shape of the object intact. In order to do that we have to do work against the internal
stresses. The force we need to apply to a piece of volume dV is −FidV (where Fi is the force
due to the internal stresses) So we need to do the work δRour = −FiδuidV . The internal
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forces then do the work δR = FiδuidV . Hence the total work done by the internal stresses is
given by

δW =
∫
δRdV =

∫
FiδuidV =

∫ ∂σij
∂xj

δuidV

=
∫ ∂(σijδui)

∂xj
dV −

∫
σij
∂(δui)
∂xj

dV.(23.1)

If we transform the first integral to a surface integral, by Gauss’s Theorem, and take δui = 0
on the surface — we fix the boundary, we do not change the shape of the object, then we
eliminate the first term. If we use the symmetry of σik and the small-amplitude form of the
strain (linear approximation), then the last term can be rewritten so that we deduce that
(23.2) δR = −σikδuki.

23.1.1. Thermodynamics

We now assume the system to be in thermodynamic equilibrium. Using the energy density
dε and the entropy density s, the first law of thermodynamics gives
(23.3) dε = Tds− dR = Tds+ σikduki.

Defining the free energy density FF = ε− Ts we have
(23.4) dFF = −sdT + σikduki.

In the next section we consider the form of the free energy density as a function of T and
uik: FF (T, uij). Then we will use

σij = ∂FF
∂uij

23.2. Elastic Energy
• An example with a spring (or compressed stick). F = −kx, considering doubling of
the spring in width and then in length we find F = SE

L
x, so F

S
= E x

L
. F/S →stress,

x/L→ strain. On the other hand, from symmetry x→ −x we see, that the energy
E ∼ x2, or E = kx2

2 and then the force by the spring F = −dE
dx

= −kx.
The elastic equations must be linear, as this is the accuracy which we work with. The energy
density then must be quadratic in the strain tensor. We thus need to construct a scalar out
of the strain tensor in the second order. If we assume that the body is isotropic, then the
only way to do that is:

(23.5) F = F0 + 1
2λu

2
ii + µu2

ik.

• Notice, that in this approach instead of working with the tensor of the fourth rank
we are working with a scalar – free energy.

Here λ and µ are the only parameters (in the isotropic case). They are called Lamé coeffi-
cients, and in particular µ is called the shear modulus or modulus of rigidity. Note that uii
is associated with a volume change, by (22.5).

• The two terms in (23.5) are not independent, so in order to take the derivative, we
must rewrite it as independent terms.
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The quantity

(23.6) ũik = uik −
1
3δikujj

satisfies ũii = 0, and is said to describe a pure shear.
With this definition we have

uik =ũik + 1
3δikujj(23.7)

u2
ik =ũ2

ik + 2
3 ũiiukk + 1

3u
2
jj = ũ2

ik + 1
3u

2
jj.(23.8)

Hence (23.5) becomes

F =F0 + 1
2λu

2
ii + µ(ũ2

ik + 1
3u

2
jj) = F0 + 1

2Ku
2
ii + µũ2

ik. (K ≡ λ+ 2
3µ)(23.9)

In this form the two elastic terms are independent of one another.
• For the elastic energy to correspond to a stable system, each of them must be positive,
so K > 0 and µ > 0.

23.2.1. Stress

Now we have the free energy as a function of independent variables uii and ũij. So we can
take the variation of the Free energy with respect to these independent variables.

On varying uik at fixed T the free energy of (23.9) changes by

dF =Kuiidukk + 2µũikdũik = Kuiidukk + 2µũik(duik −
1
3δikdujj)

=Kuiidukk + 2µũikduik = Kujjδikduik + 2µ
(
uik −

1
3δikujj

)
duik,(23.10)

so comparison with (23.4) gives

(23.11) σik = Kujjδik + 2µ(uik −
1
3δikujj).

Note that σjj = 3Kujj, so that
ujj = σjj

3K .

We now solve (23.11) for uik:

uik =1
3δikujj + σik −Kujjδik

2µ

=σik2µ + δik

(
1
3 −

K

2µ

)
σjj
3K

=δik
σjj
9K + 1

2µ

(
σik −

1
3σjjδik

)
.

In the above the first term has a finite trace and the second term has zero trace.
This is the desired result:
• knowing the stress σij we can find the strain uij.
• knowing the strain uij we can find the stress σij by (23.11).

All isotropic materials in the linear approximation are described by just two constants.
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Elastic Modulus’.

Results of last lecture:

σik = Kujjδik + 2µ(uik −
1
3δikujj).(24.1)

uik = δik
σjj
9K + 1

2µ

(
σik −

1
3σjjδik

)
,(24.2)

where K > 0 and µ > 0.
Taking the trace of either equation we get

(24.3) ujj = σjj
3K .

This lecture is about the physical meaning of the elastic constants.
The equation of equilibrium is ∂σij

∂xj
= 0. Generally, we need to find a solution of this

equation which satisfies the boundary conditions. It is a complicated problem in general.
However, in some simple cases we can use our intuition to guess the solution, and then check
it.

24.1. Bulk Modulus and Young’s Modulus
In this part we will guess σij, check the guess, and find the corresponding deformation.

24.1.1. Hydrostatic compression.

For hydrostatic compression the force on a small tile is always perpendicular to that tile, so
the vector of force and the vector area of the tile have the exactly opposite directions. It
means that σik = −Pδik, so (24.3) gives

(24.4) ujj = −P
K
. (hydrostatic compression)

We can think of this as being a δujj that gives a δV/V , by (22.5), due to P = δP , so

(24.5) 1
K

= −δujj
δP

= − 1
V

∂V

∂P

∣∣∣∣∣
T

.

So K is inverse isothermal compressibility βT = − 1
V

(
∂V
∂P

)
T
as defined in thermodynamics.
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24.1.2. Uni-direction compression.

Now let there be a compressive force per unit area P along z axis for a system with normal
along z, so that σzz = −P , but σxx = σyy = 0, on the surface of the stick. The stick is
in equilibrium, so ∂σij

∂xj
= 0. The stick is straight and uniform. The obvious solution of the

equation is σzz(~r) = −P and all other components of σij are zero everywhere.
We then have σii = −P , and by (24.2) uik = 0 for i 6= k, and

(24.6) uxx = uyy = P

3

(
1

2µ −
1

3K

)
,

uzz = −P3

(
1

3K + 1
µ

)
= −P

E
, E ≡ 9Kµ

3K + µ
.(24.7)

Notice, that for positive pressure (compression) uzz is always negative, as both K > 0 and
µ > 0, and hence E > 0.

The coefficient of P is called the coefficient of extension. Its inverse E is called Young’s
modulus, or the modulus of extension.

In particular a spring constant can be found by

∆z =
∫ L

0
uzzdz = uzzL = −PL

E
= − L

AE
F, k = AE

L

24.1.3. Poisson’s ratio.

For the previous experiment we can define Poisson’s ratio σ via

(24.8) uxx = −σuzz.

Then we find that

(24.9) σ = −uxx
uzz

=
( 1

2µ −
1

3K )
( 1

3K + 1
µ
) = 1

2
3K − 2µ
3K + µ

.

Since K and µ are positive, the maximum value for σ is 1
2 and the minimum value is −1. All

materials in Nature (except some) have σ > 0.
Notice, that the volume is changing by δdV

dV
= uii = uzz(1 − 2σ), so if σ = 1/2 the

volume does not change – incompressible liquid. The requirements that when we compress
the volume cannot increase is the requirement that σ < 1/2.

Often one uses E and σ instead of K and µ. We leave it to the reader to show that

λ = Eσ

(1− 2σ)(1 + σ) ,(24.10)

µ = E

2(1 + σ) ,(24.11)

K = E

3(1− 2σ) .(24.12)
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24.2. Twisted rod.
In this part we will guess uij, find the corresponding σij, check that it satisfies the equilibrium
condititon, and then find what boundary conditions are required.

Let’s take a circular rod of radius a and length L and twist its end by a small angle θ.
We want to calculate the torque required for that.

• We first guess the right solution.
Two cross-section a distance dz from each other are twisted by the angle θ

L
dz with respect to

each other. So a point at distance r from the center on the cross-section at z + dz is shifted
by the vector d~u = r θ

L
dz~eφ in comparison to that point in the cross-section at z. We thus

see that the strain tensor is
uzφ = uφz = 1

2
duφ
dz

= 1
2r
θ

L
and all other elements are zero.

The relation between uij and σij is local, so we can write them in any local system of
coordinates. So as the strain tensor is trace-less

σzφ = σφz = µr
θ

L
.

and all other elements are zeros.
• Notice, that for that stress tensor ∂σzφ

∂z
= ∂σzφ

∂φ
= 0, so the condition of equilibrium is

satisfied and our guess was right.
Now we calculate the torque on we need to apply to the end. To a small area ds at a

point at distance r from the end we need to apply a force dFφ~eφ = σφzdS~eφ. The torque of
this force with respect to the center is along z direction and is given by dτ = rFφ = rσφzdS.
So the total torque is

τ =
∫
rσφzdS =

∫ a

0
rµr

θ

L
rdrdφ = µ

θ

L

∫ a

0
r3drdφ = π

2
µ

L
a4θ.

So we can measure µ in this experiment by the following way
(a) Prepare rods of different radii and lengths.
(b) For each rod measure torque τ as a function of angle θ.
(c) For each rod plot τ as a function of θ. Verify, that for small enough angle τ/θ does

not depend on θ and is just a constant. This constant is a slope of each graph at
small θ.

(d) Plot this constant as a function of πa4

2L . Verify, that the points are on a straight line
for small πa4

2L . The slope of this line at small πa4

2L is the sheer modulus µ.
(e) One can also measure πa4

2L by measuring the frequency of oscillations of a disk on
known moment of inertia hanged on a thread.





LECTURE 25
Small deformation of a beam.

Let’s consider a small deformation of a (narrow) beam with rectangular cross-section under
gravity.

We do not want to find the full deformation of it – this is a difficult problem, and we
do not need it. We want to describe an overall “shape” of the beam only. So we want to
disregard the changes in cross sections, but we cannot disregard the forces that act in there.

• x coordinate is along undeformed beam, y is perpendicular to it, pointing up.
• Nothing depends on z. ẑ points towards us.
• Part of the beam is compressed, part is stretched.
• Neutral surface. The coordinates of the neutral surface is Y (x).
• Deformation is small, |Y ′(x)| � 1.

Under these conditions the angle θ(x) ≈ Y ′(x). So
the change of the angle θ(x) between two near points
is dθ = Y ′′(x)dx.

The neutral surface is neither stretched, nor com-
pressed. The line which is a distance y from this
surface is stretched (compressed) in x direction by
dux = ydθ = yY ′′dx, so we have

uxx = ∂ux
∂x

= y
∂2Y (x)
∂x2 .
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• The stretching (compression) proportional to the second derivative, as the first de-
rivative describes the uniform rotation of the beam.

There is no confining in the y or z directions, so we find that

σxx = −Euxx = −Ey∂
2Y (x)
∂x2 .

Consider a cross-section of the beam at point x. The force in the x direction of the dydz
element of the beam is dfx = σxxdzdy. The torque which acts from the right part on the
left is

τ(x) =
∫
yσxxdydz = −E∂

2Y (x)
∂x2

∫
y2dzdy = −IAE∂

2Y (x)
∂x2 , I =

∫
y2dydz∫
dydz

.

(A is the cross-section area.) This torque is in the negative ẑ direction.
The beam is at equilibrium. So if we take a small portion of it, between x and x+dx, the

total force and torque on it must be zero. Let’s consider these two conditions one by one:
Force: Let’s say that the y component of the force on the cross-
section at x with which the right side is acting on the left is
F (x).

F (x+ dx)− F (x)− ρgAdx = 0, ∂F

∂x
= ρgA.

(positive direction is up, along ŷ.)
Torque: The total torque (with respect to the point x + dx,
positive is counterclockwise) acting on this portion is

−τ(x+ dx) + τ(x) + F (x)dx+ 1
2mρgA(dx)2 = 0, ∂τ

∂x
= F (x).

From these equations we find
∂2τ

∂x2 = ∂F

∂x
= ρgA, IAE

∂4Y (x)
∂x4 = −ρgA.

The general solution of this equation is simply

Y (x) = − ρg

24IEx
4 + C3

6 x3 + C2

2 x2 + C1x+ C0.

τ(x) = −IAE∂
2Y (x)
∂x2 , along −ẑ direction

F (x) = −IAE∂
3Y (x)
∂x3 , along +ŷ direction(25.1)

Both the force and the torque is from the right on the left side of a cross-section at x.
• The constants must be found from the boundary conditions.

25.1. A beam with free end. A diving board.
We need to determine four unknown constants. C0, C1, C2, and C3.

We take y = 0 at x = 0 — fixing the position of one end — which gives C0 = 0. Another
condition is that at x = 0 the board is horizontal – the end is clamped ,

Y ′(x = 0) = 0
This determines C1 = 0.
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At the other end (distance L) both the force and the torque are zero — it is a free end,

so we get the conditions

F (x = L) = ∂3Y (x)
∂x3

∣∣∣∣∣
x=L

= 0, τ(x = L) = ∂2Y (x)
∂x2

∣∣∣∣∣
x=L

= 0.

These two conditions will define C3 = ρg
IE
L and C2 = − ρg

2IEL
2.

Y (x) = − ρg

24IEx
2
(
x2 − 4xL+ 6L2

)
.

In particular,
Y (x = L) = − ρg

8IEL
4.

Notice the proportionality to the fourth power.
Different modes for the boundary conditions.
• Clamped.
• Supported.
• Free.





LECTURE 26
A rigid beam on three supports.

26.1. Results of the previous lecture.
The shape of the beam is given by

Y (x) = − ρg

24IEx
4 + C3

6 x3 + C2

2 x2 + C1x+ C0.

τ(x) = −IAE∂
2Y (x)
∂x2 , along −ẑ direction

F (x) = −IAE∂
3Y (x)
∂x3 , along +ŷ direction(26.1)

Both the force and the torque is from the right on the left side of a cross-section at x.
• The constants must be found from the boundary conditions.

26.2. The force on the middle.
Consider an absolutely rigid E = ∞ horizontal beam with its ends fixed. Let’s see how the
force on the central support changes as a function of height h of this support. For h < 0 the
force is zero. For h > 0 the force is infinite and h → 0− and h → 0+ are very different. So
the situation is unphysical. It means that the order of limits first E →∞ and then h→ 0 is
wrong. We need to take the limits in the opposite order: first take h = 0 and then E →∞.
In this order the limits are well defined. So we need to solve the static horizontal beam on
three supports for large, but finite E and then take the limit E →∞ at the very end, when
we already know the solution. Luckily we know how to solve this problem for large E!

The beam is of length L. The central support has
a coordinate x = 0 and is at the distance lL from
the left end and at the distance lR from the right end
(lR + lL = L).

The central support exerts a force F2 on the beam.
This force is at a single point.

• It means that there is a jump/discontinuity
in the internal elastic forces at x = 0.
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• However, everything is piece-wise continuous
on the left and on the right of x = 0.

We then need to consider the shape of the beam to be given by two functions: YL(x) and
YR(x). As all supports are at the same height we must have YL(x = 0) = YL(x = −lL) =
YR(x = 0) = YR(x = lR) = 0, so

YL = − ρg
24IEx(x+ lL)

(
x2 + CL

1 x+ CL
0

)
for −lL < x < 0

YR = − ρg
24IEx(x− lR)

(
x2 + CR

1 x+ CR
0

)
for 0 < x < lR

In order to find the force from the middle support on the beam F2, lets consider a small
(length dx) element right on top of the middle support. The sum of all forces must be zero,
so we get

F2 + fR − fL − ρAgdx = 0.
Taking the limit dx→ 0 we find

F2 = fL − fR = IAE

(
d3YR
dx3

∣∣∣∣∣
x=0
− d3YL

dx3

∣∣∣∣∣
x=0

)
= −ρgA4

(
CR

1 − CL
1 − lR − lL

)
.

Check the units.
Computing the total torque (around the support point) on the same element we get

fRdx/2 + fLdx/2 + τR(dx/2)− τL(dx/2) = 0, in dx→ 0 limit, τR(0) = τL(0).

The boundary conditions are
• The torque at x = 0 is continuous: ∂2YL

∂x2

∣∣∣
x=0

= ∂2YR
∂x2

∣∣∣
x=0

.
• The beam is smooth at x = 0: ∂YL

∂x

∣∣∣
x=0

= ∂YR
∂x

∣∣∣
x=0

.
• The torques on both ends are zero, ∂2YL

∂x2

∣∣∣
x=−lL

= 0 and ∂2YR
∂x2

∣∣∣
x=lR

= 0.
We thus have four conditions and four unknowns.

We now see what the boundary conditions give one by one:
•

CL
0 + lLC

L
1 = CR

0 − lRCR
1 .

•
lLC

L
0 = −lRCR

0 .

•
3l2R + 2CR

1 lR + CR
0 = 0, 3l2L − 2CL

1 lL + CL
0 = 0.

These are four linear equation for four unknowns. We only need a combination CR
1 − CL

1
from them. Solving the equations we find

CR
1 − CL

1 = −1
2(lR + lL) l

2
R + lRlL + l2L

lRlL
.

and hence the force is

F2 = ρgA

8 (lR + lL)
(

1 + (lR + lL)2

lRlL

)
= Mg

8

(
1 + L2

l(L− l)

)
.

where l is the distance between the left end and the central support.
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After this we find that

FL = Mg

8

(
3 + l

L
− L

l

)
, FR = Mg

8

(
3 + L− l

L
− L

L− l

)
.

In particular
• The answer does not depend on E! So the limit E →∞ is well defined!
• If l = L/2, we have F2 = 5

8Mg, FL = FR = 3
16Mg. The guy at the center carries

more than half of the total weight!
• If l→ 0 (l→ L), then F2 and FL (FR) diverges. Why?

26.3. The force as a function of h.
Now let’s finish this problem and compute how the force F2 depends on the height h of the
middle support. We simplify the problem by considering the middle support to be in the
center.

We expect that the result for the force on the cen-
ter support will be linear in h as for a spring.

• This is different from the situation of two
unstretched springs. The difference is the
torques that appears at bending.

So the result should have the form F (h) = −5
8Mg − kh. The spring constant k will depend

on the Young modulus E. It is also clear, that if we fix the position of the ends (this is what
we do for the solution) the spring constant will not depend on g, as it will be the same even
without gravity. The force is always proportional to the combination EIA.

• The dimensional analysis then gives k ∼ EIA
l2

h
l
.

The prefactor should be just a number.
Again we have two functions YL(x) and YR(x) and the following boundary conditions
• The ends are at Y = 0, so

YL(x = −l) = 0, YR(x = l) = 0.

• At x = 0 we must have Y = h, so

YL(x = 0) = h, YR(x = 0) = h.

• The torque is continuous at the center
∂2YL
∂x2

∣∣∣∣∣
x=0

= ∂2YR
∂x2

∣∣∣∣∣
x=0

.

• The beam is smooth at the center
∂YL
∂x

∣∣∣∣∣
x=0

= ∂YR
∂x

∣∣∣∣∣
x=0

,

• The torques at the ends are zero.
∂2YL
∂x2

∣∣∣∣∣
x=−l

= 0, ∂2YR
∂x2

∣∣∣∣∣
x=l

= 0,
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The force on the support from the beam is given by (different sign then before)

F = −IAE
(
d3YR
dx3

∣∣∣∣∣
x=0
− d3YL

dx3

∣∣∣∣∣
x=0

)
.

The first two conditions are satisfied by the functions of the form

YL(x) = − ρg

24IE (x+ l)
(
x3 + CL

2 x
2 + CL

1 x−
24IE
ρgl

h

)

YR(x) = − ρg

24IE (x− l)
(
x3 + CR

2 x
2 + CR

1 x+ 24IE
ρgl

h

)
The rest four conditions are enough to determine four unknown constants. As the result we
have for the force on the support

F (h) = −5
8Mg − 6EIA

l2
h

l
.

It has the expected form. One can see, that

F (h = 0) = −5
8Mg

F = 0, for h = −l 5
48
Mgl2

EIA

F = −Mg, for h = l 3
48
Mgl2

EIA
.



LECTURE 27
Hydrodynamics of Ideal Fluid: Mass conservation and

Euler equation.

27.1. Hydrostatics.
For the statics of liquid we can use the elastic theory. The main difference between the solid
body and the liquid is that the liquid has zero sheer coefficient. In this case the equation

σik = Kujjδik + 2µ(uik −
1
3δikujj).

tells us that the stress tensor is diagonal and we can use σij = −Pδij. The constant P is
called pressure. We then have

δV

V
= uii = σii

3K = −P
K
.

The constant K is then given by the equation of state for the liquid.
The equilibrium condition

∂σij
∂xj

= ρgi,

gives
∂P

∂xi
= −ρgi, ~∇P = −ρ~g

So P = ρgh.
Consider a small volume dV . The force which acts on it is the weight ρ~gdV and the force of

the hydrostatic pressure. We see, that the force of the hydrostatic pressure is d~f = −dV ~∇P .

27.2. Hydrodynamics
• Separation of scales.
• Separation of time scales.
• Universality.

Ideal fluid means that there is no viscosity.
93
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27.2.1. Mass conservation.

The liquid is now moving. Mass current: amount of mass dM through an area dS during
time dt is dM = Idt, I is proportional to dS and depends on the orientation, so I = ~j · d~S.
~j is the current density and is

~j = ρ~v.

Mass conservation, consider a small volume dV
• during time dt the amount of mass in the volume changes by δm = −dt

∮ ~j · d~S =
−dt

∫ ~∇ ·~jdV .
• The change of mass is dt

∫
ρ̇dV .

• As it is correct for any volume we have

ρ̇+ ~∇ ·~j = 0.

This is called continuity equation. It represents the fact that the mass cannot appear or
disappear. It will also be correct for any conserved quantity with the correct definition of
“current density”.

27.2.2. Another Euler equation.

We can describe the flow of liquid in two different ways:
• Describe the position and the velocity of the “liquid particles” as the function of
time.
• Introduce the fields ρ(~r, t), P (~r, t), and ~v(~r, t) of density, pressure, and velocity and
describe the dynamics of these fields.

Describe the two point of views.
• the field ~v(~r, t) describes the velocity at the point ~r at time t. It is NOT a velocity
of an object! it’s time derivative ∂~v

∂t
is NOT an acceleration of an object. We cannot

use the Newton’s laws for it.
Instead we must consider a small volume dV at point ~r at time t. This volume has mass ρdV
and is an object to which we can apply the Newton’s law ~F = m~a.

• The force which acts on this volume is −dV∇P .
• Considering the vector field ~v(~r, t) as given at each point and at each time(!):

– At time t our volume dV has the velocity ~v(~r, t).
– At time t+ dt this volume/object will shift to the position ~r′ = ~r + ~v(~r, t)dt.
– So its velocity at time t+ dt is

~v(~r′, t+ dt) = ~v(~r + ~v(~r, t)dt, t+ dt) ≈ ~v(~r, t) + (∇i~v)vidt+ ∂~v

∂t
dt.

– So during time dt the velocity of the volume/object dV has changed by dv =
dt(~v · ∇)~v + ∂~v

∂t
dt.

– Its acceleration then is ~a = dv
dt

= (~v · ∇)~v + ∂~v
∂t
.

• Now we can write ~F = m~a:

−dV∇P = ρdV

(
(~v · ∇)~v + ∂~v

∂t

)
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The equation of the vector field ~v(~r, t) time evolution (Euler equation) is

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇P

In case there is gravity there is extra force ρdV ~g on this volume/object, so the equation is
modified

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇P + ~g.

This equation together with the continuity equation and the equation of state are the full
set of equations which must be supplied with the boundary conditions.

• The equation of state – how ρ depends on P (and may be temperature) – is what
distinguishes one liquid from another.
• All together we have three equations (five in components) for three (again five in
components) fields ~v, P , and ρ.





LECTURE 28
Hydrodynamics of Ideal Fluid: Incompressible fluid,

potential flow.

28.1. Incompressible liquid.
In case of incompressible liquid the equation of state is particularly simple: the density is
constant. So we have

~∇ · ~v = 0, ∂~v

∂t
+ (~v · ~∇)~v = −~∇

(
P

ρ
+ Φg

)
.

In this case we can use the following trick (more formal justification can be found in the
cutout): we will be looking for the solution in the form

~v = ∇φ.

Notice, that this implies that curl~v = 0.

Using the formula

~v × curl~v =
1
2
~∇v2 − (~v · ~∇)~v

we can rewrite the Euler equation as
∂~v

∂t
− ~v × curl~v = −~∇

(
P

ρ
+ Φg +

1
2
v2
)
.

If we now take curl of both sides we’ll get
∂

∂t
curl~v − curl(~v × curl~v) = 0

Notice, that this equation is identically

satisfied if curl~v = 0. Which in turn iden-

tically satisfied by ~v = ~∇φ for some func-

tion φ.

The continuity equation then gives

∆φ = 0.

This is so called potential flow. We need to supplement this
equation with the boundary conditions. The simplest one is
that on each boundary the component of the fluid velocity
perpendicular to the boundary equals to the component of
the boundary velocity perpendicular to the boundary.

Now substituting ~v = ~∇φ into the Euler equation and
using (~v · ~∇)~v = ∂iφ∂i∂jφ = ∂iφ∂j∂iφ = 1

2∂
j(∂iφ)2 = ∇1

2v
2

we find

~∇
(
∂φ

∂t
+ P

ρ
+ Φg + 1

2v
2
)

= 0,

and finally (notice, that the function f does not depend on the coordinate and thus must be
given by the boundary conditions) we get the equation for P .

∂φ

∂t
+ P

ρ
+ Φg + 1

2v
2 = f(t)
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28.2. Potential flow around a moving sphere
Consider a sphere of radius R moving with the velocity ~u in the ideal incompressible fluid.
The flow of the fluid around the sphere is potential, so we need to solve the equation

∆φ = 0, ~n · ~v|on sphere = ~n · ~u, ~v|r→∞ → 0.

where the boundary conditions demand that the normal component of the fluid on the sphere
equals the normal component of the element of the sphere.

The function φ is the scalar. It must linearly depend on the velocity ~u as both the Laplace
equation and the boundary conditions are linear. This is analogous to the dipole field in the
electrostatics, so the solution must be of the form

φ = a~u · ~∇1
r
,

where a is an arbitrary constant which must be found from the boundary conditions. This
is the field produced by the dipole ~d = a~u, so the velocity (electric field) is

~v = a

r3 [3~n(~u · ~n)− ~u] .

So on the sphere surface we have

~v · ~n|r=R = 2a
R3 (~u · ~n)

and we see, that a = R3

2 and

φ = −R
3

2r2~u · ~n, ~v = R3

2r3 [3~n(~u · ~n)− ~u] .

In order to calculate the pressure use ∂φ
∂t

+ P
ρ

+ 1
2v

2 = P0
ρ
. We then need to calculate ∂φ

∂t
.

In order to do we must remember, that the sphere is moving, so we need to think about the
potential φ as a function of the position of the center of the sphere ~r0 and its velocity ~u:
φ(~r − ~r0, u), then we have

∂φ

∂t
= ∂φ

∂~u
· ~̇u− ~u · ∇φ.

We then find
P = P0 + 1

8ρu
2(9 cos2 θ − 5) + 1

2ρR~n ·
d~u

dt
.

We can calculate the total force acting on the sphere
~F =

∮
Pd~S.

The integration of the first two terms in P gives zero. For the last term we find

Fi = 1
2ρR

duj
dt

4πR2njni = 1
2

4π
3 ρR3dui

dt
.

(it is clear that njni must be diagonal. Also nxnx = nyny = nznz and nini = 1) So we find
that

~F = 1
2ρR

duj
dt

4πR2njni = 2π
3 ρR3d~u

dt
.

Notice:
• Without the viscosity the force is zero if the velocity of the sphere does not change.
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• The liquid just effectively changes the mass of the sphere by the value

1
2

4
3πR

3ρ.

Half of the expelled mass.


