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LECTURE 1. INTRODUCTION. 1

LECTURE 1
Introduction.

Preliminaries.
• Contact info.
• Syllabus. Homework 40%, First exam 30%, Final 30%.
• Grading scheme: 90-100 A; 75-89.99 B; 60-74.99 C; 50-59.99 D; 0-49.99 F. Grades
may be curved a bit.
• Attendance policy.
• Zoom. In case I need to quarantine.
• Lecture, feedback. Going too fast, etc.
• Office hours (Mondays 10:30-11:30 am on Zoom or in-person)
• Canvas.
• Homework submissions through Canvas. PDF SINGLE FILE.
• Homeworks due by Wednesday’s lectures.
• Homework session. WHEN???.
• Homeworks: To cheat or not to cheat? collaborations!!!!! make study groups, mis-
takes, etc.
• Honors problems. Indicate if you are an Honors student on top of your homework.
• Grading. Every assignment is 100 pt. The points split equally between the problems
in a given assignment.
• Exams. The same point system as in homework assignments. First exam is take
home. Most of the problems are taken from the problem bank. The bank is on the
web.
• Book. Lecture notes. Lectures and lecture notes.
• Language.
• Course content and philosophy.
• Questions: profound vs. stupid.
• Lecture is a conversation.





LECTURE 2
Coordinates. Scalars. Vectors. Einstein notations.

2.1. Coordinates, scalars, vectors.
• Coordinates.

– Coordinate systems. You chose a coordinate system to describe a process (po-
sitions, motion, fields, etc)

– The physical process does not depend on the system of coordinates you use to
describe it!

– This obvious statement leads to the requirement, that all physics laws were
formulated in a system-of-coordinate independent way.

– We need to define mathematical objects which allow for manipulation in a co-
ordinate independent way. Such objects are: scalars, vectors, tensors, etc.

• Scalars.
– Scalars do not depend on the coordinate system.
– Representation of the scalar does not depend on the coordinate system.
– Examples are:

∗ Energy, charge, mass, etc.
∗ Example of not a scalar: a component of a vector.

– You operate with scalars as with normal numbers.
• Vectors.

– Vectors do not depend on the coordinate system.
– Representation of a vector through components does depend on the coordinate
systems!

– Examples are:
∗ Forces, velocity, acceleration, etc.

– If you or I say that something is a vector, it is NOT an empty statement.
– This statement demands, requires, and allows certain operations with them.
The same way as if something is a number, then we know that we can add,
subtract, multiply, and divide.

– With vectors rules are different! For example, one cannot divide by a vector!
Such operation does not exist. The expression 1

~a
makes no sense and MUST

never appear.
3
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• Vector components: Given a coordinate system one can express/represent a vector
by its components in this particular coordinate system.
• If one changes the coordinate system the vector DOES NOT change, but its compo-
nents in the new coordinate system will be different from the components in the old
one.
• All operations with vector can be formulated in the coordinate independent way.
They also can be formulated through components in a GIVEN coordinate system.
• What can be done with vectors? What kind of operations can we define that will
not depend on the coordinate system?
• Linearity

– One can multiply a vector by a number.
– One can add two vectors.
– Using these properties, in a coordinate system given by three orthonormal vec-
tors êx, êy, êz, we can represent a vector ~a through its components in THE
SAME coordinate system

(2.1) ~a = axêx + ayêy + az êz.

Again, vector ~a is independent of the coordinate system. The unit orthogonal
vectors êx, êy, êz define/describe the coordinate system. In that coordinate sys-
tem the vector ~a has components ax, ay, and az. The vector ~a can be represented
in the coordinate system given by vectors êx, êy, êz by the above expression.

• Scalar (dot) product.
– Coordinate independent definition.

~a ·~b = |~a||~b| cos(φ)
– Definition through components in a given coordinate system:

~a ·~b =
3∑
i=1

aibi ≡ aibi — Einstein notations.

I denoted the vector’s components by a1, a2, and a3, instead of ax, ay, and az.
You should check, that the two definitions are the same. It means that for ANY
two vectors ~a and ~b and any coordinate system |~a||~b| cos(φ) = aibi.

– Bilinear.
– Symmetric.
– The magnitude of a vector ~a is given by

|~a| =
√
~a · ~a.

– Using these properties, in a coordinate system given by three orthonormal vec-
tors êx, êy, êz, we can find the components of a vector ~a by

ax = êx · ~a, ay = êy · ~a, az = êz · ~a.
All you need to do is to take the vector representation (2.1) and take the dot
product of this expression with êx, êy, and êz

– In particular any vector can be written as
~a = êx(êx · ~a) + êy(êy · ~a) + êz(êz · ~a)

• Vector (cross) product.
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– Coordinate independent definition.
~c = ~a×~b, |~c| = |~a||~b| sin(φ), Direction — right hand rule.

– In a coordinate system given by three orthonormal vectors êx, êy, êz, we have

~a×~b =

∣∣∣∣∣∣∣
êx êy êz
ax ay az
bx by bz

∣∣∣∣∣∣∣ .
– Bilinear.
– Antisymmetric – RHR, this is why it is sin(φ) and not cos(φ). Determinant.

2.2. Kronecker symbol. Symbol Levi-Chivita. Einstein notations.
• Kronecker symbol: δi,j. (In Euclidean space there is no need to distinguish between
upper and lower indexes. In non-Euclidean space they are different!)
– Definition

δi,j =
{

1, if i = j
0, if i 6= j

– Einstein notations
aiδi,j = aj, ~a ·~b = aibi = aiδi,jb

j

• Symbol Levi-Chivita.
– Definition

εi,j,k = 0, if any of the indexes equal each other.
ε1,2,3 = ε2,3,1 = ε3,1,2 = 1
ε1,3,2 = ε2,1,3 = ε3,2,1 = −1

– Useful formulas:
εijkεijl = 2δkl, εijkεilm = δjlδkm − δjmδkl.

Notice the use of Einstein notations: In the first formula we sum over all values of
two indexes i and j; In the second we sum over all the values of only one index i.
• Examples:

– Vector product ~c = ~a×~b:
ci = [~a×~b]i = εijkajbk

cx = [~a×~b]x = εxyzaybz + εxzyazby = aybz − azby, etc.
Importance of the order of indexes.

– Scalar product of two vector products:

[~a×~b] · [~c× ~d] = [~a×~b]i[~c× ~d]i = εijkεilmajbkcldm =
(
δjlδkm − δjmδkl

)
ajbkcldm =

ajcjbkdk − ajdjbkck = (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c)
– Triple vector product:

[~a× [~b× ~c]]i = εijkεklmajblcm = εkijεklmajblcm =(
δilδjm − δimδjl

)
ajblcm = biajcj − cibjaj =

[
~b(~a · ~c)− ~c(~a ·~b)

]i
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so
[~a× [~b× ~c]] = ~b(~a · ~c)− ~c(~a ·~b)

• Bilinearity.
• Differentiation of scalar and vector products.

– Example: Consider a unit vector ~n(t) which depends on time t (or any other
parameter). As ~n is a unit vector we have ~n ·~n = 1. Differentiating with respect
to time gives ~̇n · ~n = 0 — the derivative is orthogonal to the vector ~n at all
times.

– Notations:
ḟ ≡ df

dt
.

• Differentiation of |~r|. We start with |~r| =
√
~r · ~r, then using the chain rule

d

dt
|~r| = d

dt

√
~r · ~r = d

dt

√
riri = drj

dt

∂
√
riri

∂rj
= drj

dt

∂ri
∂rj

ri
|~r|

= drj
dt
δi,j

ri
|~r|

= ~r · ~̇r
|~r|

.



LECTURE 3
Newton’s laws.

• Notations:
ḟ ≡ df

dt
.

3.1. Frames of reference.
Notations:

If ~r is a position vector, then
~̇r ≡ ~v — velocity, the rate of change of the position,
~̇v = ~̈r ≡ ~a — acceleration, the rate of change of the velocity.

All three: the position ~r, the velocity ~v, and the acceleration ~a are vectors!!! ALL three
vectors generally depend on time!

• Moving frame of reference:

~r = ~R + ~r′

~̇r = ~̇R + ~̇r′, ~v = ~V + ~v′

• Different meaning of dt and d~r. It is not guaranteed, that dt is the same in all frames
of reference, but it is in classical (non-relativistic) mechanics.
• Velocity of the same object is different in the different frames of references! So the
fundamental laws cannot be formulated in terms of the velocities!
• If ~V is constant, then ~̇v = ~̇v′.
• Galileo: The laws of physics must be the same in all inertial frames of reference.
• The laws then must be formulated in terms of acceleration.

7
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• Initial conditions: initial position and initial velocity – we need to set up the motion.
• First Newton’s law. If there is no force a body will move with constant velocity.

– What is force? Interaction. Is there a way to exclude the interaction?
– The existence of a special class of frames of reference – the inertial frames of
reference.

• Force, as a vector measure of interaction.
• Point particle and mass.
• The requirement that the laws of physics be the same in all inertial frames of refer-
ences. The second Newton’s law: ~F = m~a.

3.2. Second Newton’s law.
The second Newton’s law:

In order to apply it you must:
• Identify the object!!!!!
• Identify ALL the forces acting on THAT object. Remember, the forces are vectors.
Remember forces may and in most cases will depend on the object’s position, velocity
etc. It may also depend on time. It may also depend on the positions and velocities
of other objects which interact with a given one.
• Compute the net force. Superposition. The net force is simply the vector sum of all
forces acting on the object. As a result you will have the net force ~F which depends
on time as well as on the object’s position, velocity, etc: ~F (t, ~r, ~̇r, . . . ).
• Write the equation of motion

m~̈r = ~F (t, ~r, ~̇r, . . . ).

This is a system of three second order non-linear differential
equations!!!!

• In order to find a solution ~r(t) this system must be supplied with six initial conditions!
(two conditions (second order=two conditions) for each of the three equations.)

3.2.1. Another formulation.

The second Newton’s law formulated as ~F = m~a is not very convenient is the mas of the
object is changing in time. However, starting from the the constant mass, we can reformulate
it in the following way

~F = m~a = m
d~v

dt
= d(m~v)

dt
= d~p

dt
.

where ~p is the vector of momentum. In short
~F = ~̇p.

3.3. Third Newton’s law.
• A force is the result of INTERACTION!
• Interaction involves TWO objects.
• If object 1 interacts with the object 2, then this interaction results in TWO forces:
one ~Fon 1 from 2 acts on the object 1 and the other ~Fon 2 from 1 acts on the object 2.
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• The third Newton’s law states that:

~Fon 1 from 2 = −~Fon 2 from 1.

3.4. Examples.
In the following I give very simple examples of the use of the Newton’s Laws.

~F = m~a works both ways.
• Given the motion we can find the total force.

– An object of mass m is sitting on a table. The coefficient of friction is µ. We
apply a force F to the object parallel to the table. The object is not moving.
What is the friction force?

– Going around a circle. ~r(t) = êxR cos(ωt) + êyR sin(ωt) — this is our motion.
We find the acceleration ~a = ~̈r = −ω2~r. There must be a force acting on the
particle: ~F = m~a = −mω2~r.

– Archimedes law.
• Given the force we can find the motion.

– Vertical motion. ~F = −mgêy. So if ~r = xêx + yêy, then m~̈r = mẍêx + mÿey =
−mgêy. Or in components

ẍ = 0, ÿ = −g
Two second order differential equations: four initial conditions
x(t = 0) = x0, ẋ(t = 0) = vx0, y(t = 0) = y0, ẏ(t = 0) = vy0

The solution

x(t) = x0 + vx0t, y(t) = y0 + vy0t−
gt2

2 .

– Wedge. Using ~F = m~a both ways.
– Wedge with friction.
– Pulley.





LECTURE 4
Air resistance.

• Momentum ~p = m~v — usual way. ~F = ~̇p.
• Water hose. Force per area

f = ρv2.

Force is proportional to the velocity squared.
• Force of viscous flow. Two infinite parallel plates at distance L from each other. The
top plate is moving with velocity v in the direction parallel to the plates, which we
will take as x̂ direction. The bottom plate is at rest. There is a viscous liquid in
between the plates. What force is acting on the plates?

The force per area of a viscous flow is proportional to the velocity difference,
or derivative F/S = f ∼ −∂vx/∂y. This follows simply from the fact, that if the
velocity of liquid is the same for all y, then there is no force. And if the area doubles,
the force obviously also doubles. The coefficient of proportionality depends on the
liquid, we will call it η, so

F (y) = −ηS∂vx
∂y

.

This is the force that acts from the lower part on the upper part. The force that
acts from the upper part on the lower part is, by Newton’s third law, the same, but
opposite in direction.

Consider a slab of liquid of thickness dy, the total force which acts on a liquid of
area S of this slab is ηS

(
− ∂vx

∂y

∣∣∣
y

+ ∂vx
∂y

∣∣∣
y+dy

)
= ηSdy ∂

2vx
∂y2 .

11
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The mass of the slab of the area S is ρSdy. so if it has acceleration a, then we
must have

ηSdy
∂2vx
∂y2 = aρSdy, ηS

∂2vx
∂y2 = aρS

In the steady state the acceleration a = 0, so
∂2vx
∂y2 = 0, vx(y = 0) = 0, vx(y = L) = v.

The solution of this equation is

vx(y) = v
y

L
.

The force per area then is proportional to

f ∼ −∂vx
∂y

= −v/L.

So the force is linear in velocity.



LECTURE 5
Air resistance.

5.1. Air resistance.

We consider two model cases: the air resistance is proportional to v, or to v2 – linear, or
quadratic. These forms of the air resistance should not be taken literary. These two cases are
just models we will use to learn how the motion depends on the forms of the air resistance.

In reality one can think of the two regimes: for small velocity the resistance is mainly
proportional to v, for large velocity it is mainly proportional to v2. And for even larger
velocities the air flow will become turbulent and the resistance force will become a lot more
complicated (not even a function of velocity).

In fact one will have both cases. If we start with large velocity and resistance proportional
to v2 and the velocity is decreasing, then it will eventually become small enough to switch
to the regime where the resistance is proportional to v.

What is the boundary, or more precisely what does it mean small or large velocity (small
or large in comparison to what?) depends on the body, air, etc.

The main point of this lecture is to show that the motion is very different for these two
cases. And the difference comes exactly from different powers of v, not from the prefactors.

In this lecture I will only consider 1D cases. The particle moves along a straight line.
13
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5.2. No gravity.
5.2.1. Linear in v case

F = −γv
The parameter γ is some number which depends on many factors: shape of the body, prop-
erties of its surface, air composition etc. The units of γ can be computed: the units of force
[F ] = kg ·m/s2, the units of velocity [v] = m/s, so the units of γ are

[γ] = [F ]
[v] = kg ·m/s2

m/s
= kg/s

The main result is that the resistance linear in v is strong enough that the body will
travel only a finite distance.

We denote the coordinate of the body by x. The velocity is v = dx
dt
, the acceleration

a = dv
dt

= d2x
dt2

. As the force in our case depends only on the velocity, the equation of motion
ma = F takes the form:

mv̇ = −γv, v(t = 0) = v0, x(t = 0) = 0,

where I placed the origin of the coordinate at the initial point of the motion and the initial
velocity of the motion is v0.

The differential equation is the standard one, so the solution is

v(t) = v0e
− γ
m
t.

(Check that the initial condition v(t = 0) = v0 is satisfied!!)
In order to find the coordinate of the particle as the function of time x(t) we use the

definition v(t) = dx
dt
, rewrite it in the form dx = v(t)dt and integrate

∫ x(t)
0 dx′ =

∫ t
0 v(t′)dt′

x(t) =
∫ t

0
v(t′)dt′ = mv0

γ
(1− e−

γ
m
t).

(Check, that the initial condition x(t = 0) = 0 is automatically satisfied.)

5.2.1.1. Analyze the result!!!!!!!! Always!!!!!. The first thing to check is that units match.
Anything which is under the exponent (or under sin or cos or log) MUST be unitless/dimensionless.
We have γt/m in the exponent. The units for this expression are [γt/m] = kg

s
s 1
kg

= 1, so it
is indeed unitless/dimensionless.

The expression for the distance l has the units of mv0
γ
. Its units are

[
mv0
γ

]
= kgm

s
s
kg

= m.
So indeed we have the units of length.

From the equation for l(t) one sees, that the total distance traveled by the body is finite.

x(t→∞) = mv0

γ
.

Notice, that the total distance
• increases, if initial velocity is increases.
• decreases, if the resistance coefficient γ increases.
• increases, if the mass increases.
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All three statements make sense on the intuitive level!

Next, we consider the limiting case which we know: if γ is very small we should (almost)
recover the known result, that the velocity stays constant (almost), and that the coordinate
x(t) is (almost) v0t. The word almost means that there are corrections which are getting
smaller and smaller as γ decreases.

Taking γt/m to be small, we use the Taylor expansion to the first non-zero order on this
small parameter.

So, if γ
m
t� 1, then

v(t) ≈ v0 − v0
γt

m
,

x(t) ≈ v0t−
1
2v0t

γt

m
.

Notice an important lesson, that the expansion parameter is γt/m. No matter how small γ
is this parameter will become large at large enough time. At these times the Taylor expansion
will no longer be valid.

5.2.2. Quadratic in v case.

The set up is the same as in the previous case. The motion is along one line. The coordinate
of the body is x. The motion starts from x = 0 with the initial velocity v0 in the positive
direction.

The resistance force is now quadratic in velocity v

F = −γ|v|v.

The parameter γ (this parameter is very different from γ used in the previous section) is
some number which depends on many factors: shape of the body, properties of its surface,
air composition etc. The units of γ are

[γ] = kg/m

(see, even units of this γ are different from the previous one.)
The main result is that the body will travel infinite distance, no matter how small the

initial velocity is.

mv̇ = −γv2, v(t = 0) = v0, x(t = 0) = 0,

The solution of this equation gives:

m

v
= γt+ m

v0
, v(t) = v0

1 + v0γ
m
t
, x(t) = m

γ
log

(
1 + v0γ

m
t
)
.

5.2.2.1. Analyze the result!!!!!!!! Always!!!!!. Check that units match!
From the last equation one sees, that the total distance traveled by the body is infinite

— the distance diverges logarithmically with time. This may not be intuitively obvious, but
this is correct if the resistance force stays proportional to v2 for all velocities.
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Consider the limiting case of small γ. If v0γ
m
t � 1 (again, notice what plays the role of

the expansion parameter!), then

v(t) ≈ v0 − v0
v0γ

m
t,

x(t) ≈ v0t− v0t
1
2
v0γ

m
t.

5.3. Air resistance and gravity. Linear case.
The gravity points down. The x axis points up. We start the motion at x = 0 with the
positive velocity v0. The equation of motion is

mv̇ = −mg − γv, v(t = 0) = v0, x(t = 0) = 0.
so rewriting the equation as

m

γ

dv

v +mg/γ
= −dt

and integrating this equation
m

γ

∫ dv

v +mg/γ
= −

∫
dt

we find the general solution
m

γ
log(v +mg/γ) = −t+ C.

Using the initial condition v(t = 0) = v0 we find

v(t) = v0e
− γ
m
t + mg

γ

(
e−

γ
m
t − 1

)
.

x(t) = v0
m

γ

(
1− e−

γ
m
t
)
− mg

γ

(
m

γ

(
e−

γ
m
t − 1

)
+ t

)

• Limit of γt/m� 1:

v ≈ v0 −
(
g + v0γ

m

)
t = v0 − g̃t, g̃ = g + v0γ

m

x(t) ≈ v0t−
g̃t2

2
Notice, that the motion is as if the acceleration of free fall is a bit different than g.
It is g̃, and it does depend on mass!!! Although, one must be careful. This is correct
only for small times t � m/γ. At these times the particle is still going up. If we
set up the motion such, that the particle is thrown down the acceleration would be
g̃ = g − v0γ

m
In our condition γt/m� 1 what t should we use? – depends on the problem.

• Time to the top. Height. At the top vT = 0,

T = m

γ
log

(
1 + γv0

mg

)
,
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for γv0

mg
� 1

T ≈ m

γ

γv0

mg
− 1

2
m

γ

(
γv0

mg

)2

= v0

g
− 1

2
v0

g

γv0

mg
,

x(T ) ≈ 1
2
v2

0
g
− 1

3
γv3

0
mg2

• Terminal velocity.

t→∞, v∞ = −mg
γ
, mg = −v∞γ





LECTURE 6
Harmonic oscillations. Oscillations with friction.

6.1. Harmonic oscillations.

• Equation:

mẍ = −kx, mlφ̈ = −mg sinφ ≈ −mgφ, −LQ̈ = Q

C
,

All of these equation have the same form

ẍ = −ω2
0x, ω2

0 =


k/m
g/l
1/LC

, x(t = 0) = x0, v(t = 0) = v0.

– Second order differential equation −→ two initial conditions.
– Units of ω0 are [ω0] = s−1.
– Notice the minus sign! This is a very important minus sign!!! It quarantines
that the oscillator returns back – oscillates, instead of running away.

– Notice the simple structure of the equation — the second derivative of a func-
tion is linearly proportional to the function itself.

– Notice, that you can read the frequency of the oscillations directly from the equation
— the frequency of oscillation is simply a square root of the proportionality co-
efficient (without the minus sign).

• The general solution is
x(t) = A sin(ω0t) +B cos(ω0t) = C sin(ω0t+ φ),

whereA andB are arbitrary constants. C =
√
A2 +B2 —amplitude; φ = tan−1(A/B)

— phase.
• Second order differential equation −→ two arbitrary constants A and B, or C and
φ.

19
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• The velocity as a function of time is
v(t) = ẋ = ω0A cos(ω0t)− ω0B sin(ω0t).

• Our initial conditions give
x(t = 0) = B = x0, v(t = 0) = Aω0 = v0,

so the arbitrary constants are given by

B = x0, A = v0

ω0
.

(check units)
• Oscillates forever. The frequency of oscillations does not depend on the initial con-
ditions and can be read straight from the equation of motion. This is the property
of harmonic oscillations. It also means, that the frequency is the property of the
system itself, not of the way we set up the motion.
• Energy. Conserved quantity: E = mẋ2

2 + mω2
0x

2

2 . It stays constant on a trajectory!
dE

dt
= mẋ

(
ẍ+ ω2

0x
)

= 0.

So E is a constant — it does not depend on time during the motion. So the value of
this constant during the motion is the same as at the initial moment of time. So the
value of this constant can be obtained from the initial conditions E = mv2

0
2 + mω2

0x
2
0

2 .

6.2. Oscillations with dissipation.
• Equation of motion.

mẍ = −kx− βẋ, −LQ̈ = Q

C
+RQ̇,

• Dissipation
dE

dt
= d

dt

(
mẋ2

2 + kx2

2

)
= ẋ (mẍ+ kx) = −βẋ2 < 0.

If β > 0, the energy is decreasing! – dissipation!



LECTURE 7
Oscillations with dissipation.

• Equation of motion.

mẍ = −kx− βẋ, −LQ̈ = Q

C
+RQ̇,

• Dissipation
dE

dt
= d

dt

(
mẋ2

2 + kx2

2

)
= ẋ (mẍ+ kx) = −βẋ2 < 0.

If β > 0, the energy is decreasing! – dissipation!
• We simplify the equation a bit introducing ω2

0 = k/m and 2γ = β/m

ẍ = −ω2
0x− 2γẋ, x(t = 0) = x0, v(t = 0) = v0.

• Units of γ are s−1 – the same as for ω0.
• Solution: This is a linear equation with constant coefficients. We look for the solution
in the form x = <Ce−iωt, where ω and C are complex constants.

ω2 + 2iγω − ω2
0 = 0, ω = −iγ ±

√
ω2

0 − γ2

• Two solutions, two independent constants.
• Two cases: γ < ω0 and γ > ω0.

Figure 1. Evolution of the complex ω as γ increases.

21



22 FALL 2014, ARTEM G. ABANOV, ADVANCED MECHANICS I. PHYS 302

7.0.1. The case γ < ω0 (underdamping):

• For γ < ω0 we may write

ω = −iγ ± Ω, Ω =
√
ω2

0 − γ2.

• The solution in this case is
x = e−γt<

[
C1e

iΩt + C2e
−iΩt

]
= |C|e−γt sin (Ωt+ φ) .

• Second order differential equation → two arbitrary constants |C| and φ. The two
constants are to be obtained from the initial conditions.
• Decaying oscillations. Shifted frequency.
• The rate of decay of oscillations is γ. The “life-time” of the oscillations ∼ 1/γ.
• Notice, that γ is the negative of the imaginary part of the complex ω.
• For γ � ω0 we can use the Taylor expansion

Ω ≈ ω0 −
1
2
γ2

ω0
.

The frequency shift with respect to the undamped case (γ = 0) is proportional to
γ2.

Figure 2. x(t) for underdamped oscillations for the initial condition x(t = 0) = x0,
v(t = 0) = v0.

7.0.2. The case γ > ω0 (overdamping):

• In this case the solution is
x = Ae−Γ−t +Be−Γ+t, Γ± = γ ±

√
γ2 − ω2

0 > 0, Γ+ > Γ−.
• NO OSCILLATIONS!!!
• For the initial conditions x(t = 0) = x0 and v(t = 0) = 0 we find

A = x0
Γ+

Γ+ − Γ−
, B = −x0

Γ−
Γ+ − Γ−



LECTURE 7. OSCILLATIONS WITH DISSIPATION. 23

For t→∞ the B term can be dropped as Γ+ > Γ−, then x(t) ≈ x0
Γ+

Γ+−Γ− e
−Γ−t.

Figure 3. x(t) for overdamped oscillations for the initial condition x(t = 0) = 1, v(t = 0) = v0.

7.1. Different limits.
— Overdamping:
We found before that in the overdamped case:

x = Ae−Γ−t +Be−Γ+t, Γ± = γ ±
√
γ2 − ω2

0 > 0
Consider a limit γ →∞. Then we have

Γ+ ≈ 2γ, Γ− ≈
ω2

0
γ

x+(t) ≈ Be−2γt, x−(t) ≈ Ae−
ω0
2γ t.

The first solution decays over time ∼ 1/2γ → 0 – almost immediately. The secons one almost
does not decay!

Let’s see where these solutions came from. In the equation
ẍ = −ω2

0x− 2γẋ
in the limit γ →∞ the last term is huge. It must be compensated by one of the others terms.
Let’s see what will happen if we drop the ω2

0x term. Then we get the equation ẍ = −2γẋ.
Its solution is ẋ = Be−2γt. After one more integration we see, that we will get the x+(t)
solution.

Now let’s see what will happen if we drop the ẍ term. We get the equation ẋ = −ω2
0

2γx.

Its solution is x = Ae−
ω2

0
2γ t – this is our x−(t) solution.

— Case of γ = 0, ω0 → 0:
In this case the equation is

ẍ = −ω2
0x→ 0

Se we expect to have ẍ = 0, or x(t) = v0t+ x0.
Let’s see how we get it out of the exact solution:

x(t) = A sin(ω0t) +B cos(ω0t)
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If we naively take ω0 → 0 we will get x(t) = B, which is incorrect. What we need to do is to
first impose the initial conditions: x(t = 0) = x0 and v(t = 0) = v0. Then we get

x(t) = v0

ω0
sin(ω0t) + x0 cos(ω0t).

Now the limit ω0 → 0 is not so trivial, as in the first term zero is divided by zero. So we
need to use the Taylor expansion sin(ω0t) ≈ ω0t. Then we get

x(t) = v0t+ x0.



LECTURE 8
External force. Resonance. Response.

• Why complex ω is always in the lower half plane?

8.1. Why harmonic oscillators are so important?
• The potential energy of the spring is kx2

2 — a parabola as function of x.
• This parabolic potential energy is what defines the harmonic oscillator. Any system
with such dependence of the potential energy will behave as a harmonic oscillator.
• Typically, the starting point to study a system is that system in equilibrium.
• In equilibrium a system is a minimum of its potential energy.
• Any function close to its minimum can be well approximated by a parabola.
• A small disturbance of a system will leave the system close to its the minimum of
the potential energy, where the potential energy can be approximated by a parabola.
• So any system close to equilibrium will behave as a collection of harmonic oscillators.

8.2. Response.
• In order to observe a system in equilibrium one must disturb it.
• Say you shine light on an object. The light interacts with the molecules, they start
to vibrate and emit light back.
• You observe that back emitted light and analyze its properties: brightness, color, etc
• In more abstract terms: You have a system in equilibrium, you disturb it, you observe
the response.
• So a property (say, color) of an object is a property of its response function!

The two points mean that we need to study how an oscillator responses to an external
force.

8.3. External force.
In equilibrium everything is at the minimum of the potential energy, so we have the harmonic
oscillator with dissipation. All we measure are the response functions, so we need the know
how the harmonic oscillator behaves under external force.

• Let’s add an external force:
ẍ+ 2γẋ+ ω2

0x = f(t), x(t = 0) = x0, v(t = 0) = v0.

25
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• The full solution is the sum of the solution of the homogeneous equation with any
solution of the inhomogeneous one. This full solution will depend on two arbitrary
constants. These constants are determined by the initial conditions.
• Let’s assume, that f(t) is not decaying with time. Any solution of the homogeneous
equation will decay in time. There is, however, a solution of the inhomogeneous
equation which will not decay in time. So in a long time t � 1/γ the solution
of the homogeneous equation can be neglected. In particular this means that the
asymptotic of the solution does not depend on the initial conditions.
• Let’s now assume that the force f(t) is periodic with some period. It then can be
represented by a Fourier series. As the equation is linear the solution will also be a
series, where each term corresponds to a force with a single frequency. So we need
to solve

ẍ+ 2γẋ+ ω2
0x = f sin(Ωf t),

where f is the force’s amplitude.

8.4. Resonance.
— Resonance:

• For arbitrary f(t) we need to solve:
ẍ+ 2γẋ+ ω2

0x = f sin(Ωf t),
where f is the force’s amplitude.
• Let’s look at the solution in the form x = −f=Ce−iΩf t, and use sin(Ωf t) = −=e−iΩf t.
We then get

C = 1
ω2

0 − Ω2
f − 2iγΩf

= |C|eiφ,

|C| = 1[
(Ω2

f − ω2
0)2 + 4γ2Ω2

f

]1/2 , tanφ = 2γΩf

ω2
0 − Ω2

f

x(t) = −f=|C|e−iΩf t+iφ = f |C| sin (Ωf t− φ) ,
• Resonance frequency for the position measurement

Ωr
f =

√
ω2

0 − 2γ2.

• Phase changes sign at Ωφ
f = ω0.

• Role of the phase: delay in response. The force is zero at t = 0, the response x(t)
is zero at t = φ/Ωf > 0, so if φ > 0 the response is “delayed” in comparison to the
force.

— Resonance in velocity measurement
• The velocity is given by

v(t) = ẋ(t) = f=iΩfCe
−iΩf t.

• The velocity amplitude is given by

fΩf |C| = f
Ωf[

(Ω2
f − ω2

0)2 + 4γ2Ω2
f

]1/2 = f
1

[(Ωf − ω2
0/Ωf )2 + 4γ2]1/2



LECTURE 8. EXTERNAL FORCE. RESONANCE. RESPONSE. 27
• The maximum is when Ωf − ω2

0/Ωf = 0, so the resonance frequency for the velocity
is ω0 — without the damping shift.
• Current is velocity.

— Analysis for small γ.
• To analyze resonant response we analyze |C|2.
• The most interesting case γ � ω0, then the response
|C|2 has a very sharp peak at Ωf ≈ ω0:

|C|2 = 1
(Ω2

f − ω2
0)2 + 4γ2Ω2

f

≈ 1
4ω2

0

1
(Ωf − ω0)2 + γ2 ,

so that the peak is very symmetric.
• |C|2max ≈ 1

4γ2ω2
0
.

• to find HWHM we need to solve (Ωf − ω0)2 + γ2 =
2γ2, so HWHM = γ, and FWHM = 2γ.
• Q factor (quality factor). The good measure of the
quality of an oscillator is

Q = ω0/FWHM = ω0/2γ.
(decay time) = 1/γ, period = 2π/ω0, so Q =
πdecay time

period .
• Quality factor Q is the property of the resonator.
• Typical Q factors:

– A grandfather’s clock Q ≈ 100.
– A quartz watch Q ∼ 104.
– An atomic clocks Q ∼ 1011 − 1016.
– The insert in the Fig. shows the resonance for
Q = 50.

0 1 2 3
0

2

4

6

γ=0.8
γ=0.6
γ=0.4
γ=0.2

0 1 2 3
0

1000

2000

3000

γ=0.01

Figure: Resonant
response. For insert

Q = 50.

8.5. Useful points.
• The complex response function

C(Ωf ) = 1
ω2

0 − Ω2
f − 2iγΩf

as a function of complex frequency Ωf has simple poles at Ωp
f = −iγ ±

√
ω2

0 − γ2.
Both poles are in the lower half plane of the complex Ωf plane. This is always so for
any linear response function. It is the consequence of causality!
• The resonator with a high Q is a filter. One can tune this filter by changing the
parameters of the resonator.
• By measuring the response function and its HWHM we can measure γ. By changing
the parameters such as temperature, fields, etc. we can measure the dependence of γ
on these parameters. γ comes from the coupling of the resonator to other degrees of
freedom (which are typically not directly observable) so this way we learn something
about those other degrees of freedom.





LECTURE 9
Momentum Conservation. Rocket motion. Charged

particle in magnetic field.

9.1. Momentum Conservation.
It turns out that the mechanics formulated by Newton implies certain conservation laws.
These laws allows us to find answers to many problems/questions without solving equations
of motion. Moreover, they are very useful even when it is impossible to solve the equations
of motion, as happens, for example, in Stat. Mech. But the most important aspect of the
conservation laws is that they are more fundamental than the Newtonian mechanics itself. In
Quantum mechanics or Relativity, or quantum field theory the very same conservation laws
still hold, while the Newtonian mechanics fails.

• Momentum conservation. Consider a system of N interacting bodies
• We number the bodies with indexes i = 1, . . . N , etc.,
• All bodies interact with each other and with something outside of our system.
• A body j acts on a body i with a force ~Fij.
• A body i experiences an external force ~F ex

i — this is the force with whatever is
outside of our system acts on the body i.
• Then for each of the bodies we have

~̇pi = ~Fi = ~F ex
i +

∑
j

~Fij.

We take Fii = 0 — no self action.
• According to the Newton’s third law ~Fij = −~Fji.
• Consider the total momentum of the whole system ~P = ∑

i ~pi, then

~̇P =
∑
i

ṗi =
∑
i

~F ex
i +

∑
i,j

~Fij =
∑
i

~F ex
i .

because ∑i,j
~Fij = 0 as in this sum for every term ~Fij there is a term ~Fji.

• So internal forces in a system do not contribute to the change of the total momentum.
• The momentum of a closed system (when there is no interaction with outside ~F ex

i = 0)
is conserved ~̇P = 0.
• Important points:

29
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– It is of paramount importance to clearly define what your system is and what
the “outside” is.

– The statement is only about the total momentum of the system.
– The nature of the forces does not matter. They can be dissipative, or non-
dissipative it will still work.

– It is THE SUM of all outside forces that leads to the change of the total mo-
mentum. The points to which the forces are applied do not matter.

– The momentum is a vector! there are three conservation laws — one for each
component.

– If only some components of the total external force are zero, then only the
corresponding components of the total momentum will be conserved.

• Examples of the momentum conservation law.
– A bullet hits a wooden block.

9.2. Rocket motion.

9.2.1. Statement of the problem:

• A rocket is a shell with the engine and the fuel.
• A rocket/engine burns fuel. The spent fuel is ejected with velocity V in the frame
of reference of the rocket. The velocity V is the property of the engine.
• Both the mass of the rocket m(t) (this is the total mass: the shell, the engine and
the fuel) and its velocity v(t) are functions of time t. The function m(t) is in our
hands – this is how we burn the fuel – how hard we press on the gas pedal.
• We want to find the function v(t) — the rocket velocity as a function of time.
• The initial mass of the rocket is minitial. The initial velocity of the rocket is vinitial.

9.2.2. Solution.

An important point is: when engine fires the rocket accelerates. So the rocket itself is NOT
an inertial frame of reference. We need to work in some external inertial frame of reference.
If a rocket has velocity v the velocity of the ejected fuel is v − V .

• At some time t the velocity of the rocket is v(t) and its mass is m(t).
• The momentum of the system rocket+fuel at time t is

P (t) = mv.

(I dropped the argument t in m(t) and v(t) for clarity, but it is still there.)
• Let’s compute the total momentum of the system rocket+fuel at time t+ dt.
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– The engine fires constantly. At time t + dt the mass of the rocket changes and
becomes m + dm (where dm is negative), its velocity becomes v + dv. The
momentum of the rocket is (m+ dm)(v + dv) ≈ mv +mdv + vdm

– The spent fuel has a mass dmf and has velocity v − V , so its momentum is
(v − V )dmf .

– As the total mass of a rocket with the fuel does not change dm + dmf = 0. So
the momentum of the burned fuel is −(v − V )dm.

• Thus the momentum of the system rocket+fuel at time t+ dt is
P (t+ dt) = mv +mdv + vdm− (v − V )dm

• So the change of the total momentum of the system rocket+fuel during time dt is
dP = P (t+ dt)− P (t) = mdv + vdm− (v − V )dm = mdv + V dm.

• As there is no external forces acting on the system rocket+fuel the total momentum
of this system must be conserved — must not change — so dP = 0

mdv = −V dm,

dv = −V dm
m
,

vfinal = vinitial + V log minitial

mfinal
.

• Notice, that the answer does not depend on the exact form of the function m(t). It
depends only on the ratio of the initial mass to the final mass.
• As final moment of time is arbitrary we can write

v(t) = vinitial + V log minitial

m(t)
• Consider now that there is an external force Fex acting on the rocket. Then we will
have

dP = Fexdt, mdv = −V dm+ Fexdt, m
dv

dt
= Fex − V

dm

dt
.

• This equation looks like the second Newton law if we say that there is a new force
“thrust”= −V dm

dt
, which acts on the rocket. Notice, that dm

dt
< 0, so this force is

positive.

9.3. Charged particle in magnetic field.
• Lorentz force: ~F = q~v × ~B + q ~E.
• No electric field — ~F ⊥ ~v, so there is no component of the force ~F along the vector
of velocity ~v, so |~v| = const.. Trajectories. gvB = mω2R = mωv, I used ωR = v.
Cyclotron frequency ωc = qB

m
. Cyclotron radius Rc = mv

qB
.

• Boundary effect.





LECTURE 10
Kinematics in cylindrical/polar coordinates.

In this lecture we will consider different coordinate systems in flat 2D space.

10.1. Cartesian coordinates.
• The Cartesian coordinates are given by the origin and two unit vectors ex and ey.
• These vectors have the following properties.

e2
x = e2

y = 1, ex · ey = 0.

• These two vectors ex and ey are the same in any point of space. (It is possible to
define such vectors only because the space is flat.)
• Any vector can be represented as

~r = xex + yey.

• We used to describing a position vector this way. However, the position vector is
only possible in flat space.
• Instead of using the position vector, we will be using an infenitesimal vector of
displacement: Say a particle moves from point (x, y) to point (x+ dx, y + dy), then

33
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the vector of displacement d~r is
d~r = dxex + dyey

• For a moving particle dividing d~r by dt we find its vector of velocity
~v = ẋex + ẏey, vx = ẋ vy = ẏ

• Differentiating the vector of the velocity we find the vector of acceleration
~a = ~̇v = ẍex + ÿey, ax = ẍ ay = ÿ

• A trajectory is given by x(t) and y(t), where t is a parameter – usually time. If
we are not interested on the time dependence, then we can give the trajectory as a
function y(x).

10.2. Polar coordinates
• In 2D we can use r and φ as coordinates.
• The polar coordinates are given by the origin and two vectors er and eφ.
• Both er and eφ are different in different points of space. These vectors are not defined
at the origin, they are defined in every point of space and are different from point to
point.
• These vectors have the following properties at every point of space

(10.1) e2
r = e2

φ = 1, er · eφ = 0.
• Our unit vectors er and eφ can be represented through the Cartesian vectors ex and
ey at every point.

er = ex cosφ+ ey sinφ
eφ = −ex sinφ+ ey cosφ ; ex = er cosφ− eφ sinφ

ey = er sinφ+ eφ cosφ
Notice, that the transformation rules (er, eφ)↔ (ex, er) do not depend on distance r
— this is a peculiarity of this particular system, it is not a general property.
• Let’s move from one point of space (φ, r) to another nearby (φ + dφ, r + dr). As

(ex, ey) are the same in every point of space we have
der = −dφex sinφ+ dφey cosφ = dφ (−ex sinφ+ ey cosφ) = dφeφ

deφ = −dφex cosφ− dφey sinφ = −dφ (ex cosφ+ ey sinφ) = −dφer
• Notice the following properties of this result

er · der = 0, eφ · deφ = 0, er · deφ + eφ · der = 0.
• From (10.1) it is easy to see, that first two of these relations are the consequence of
er · er = eφ · eφ = 1 and the last one the consequence of er · eφ = 0. In this sense these
relations are more general than the particular form of der and deφ.
• The first two relations show that a an infinitesimal increment of a unit vector must
be orthogonal to that vector (its length must not change) The second relation shows
how the orthogonal unit vectors must change in order to keep their orthogonality.
• If a point is moving as a function of a parameter, say time t, then dividing the above
expression for der and deφ by dt we get:

ėr = φ̇eφ, ėφ = −φ̇er
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• If we simply differentiate the relationships (10.1), then we get

er · ėr = eφ · ėφ = 0, er · ėφ = −eφ · ėr

10.3. Motion in polar coordinates.
• If a particle moves from point (r, φ) to point (r + dr, φ + dφ), then the vector of
displacement is

d~r = drer + rdφeφ

Notice, that the vectors er and eφ are taken at point (r, φ).
• The vector of velocity is simply ~v = d~r

dt
.

~v = d~r

dt
= ṙer + rφ̇eφ.

We can get the same result differently, simply writing, that ~r = rer (this is only
possible in a flat space!), and using ėr = φ̇eφ

~v = ~̇r = ṙer + rėr = ṙer + rφ̇eφ.

• We see that the components of the velocity in the polar coordinates are given by

vr = ṙ

vφ = rφ̇

• Acceleration – we must differentiate the vector of the velocity! NOT ITS COMPO-
NENTS!!!

~a = ~̇v = r̈er + ṙėr + ṙφ̇eφ + rφ̈eφ + rφ̇ėφ =
(
r̈ − rφ̇2

)
er +

(
rφ̈+ 2ṙφ̇

)
eφ.

from where we can read the components of the acceleration vector ~a

ar = r̈ − rφ̇2

aφ = rφ̈+ 2ṙφ̇

• In the case r = const, φ̇ = ω, we have ~a = −rω2er + rω̇eφ.
• Notice, if φ̇ = ω = const, then aφ = 2ṙω – this is the origin of the Coriolis force.
• In the polar coordinates we use r and φ to describe the position. As our space is flat
we can write the position vector ~r as

~r = rer(r, φ)

Notice, that differentiating this relation with respect to time we will recover all
previous formulas. But such construction is possible only in flat space, and is not
needed!

10.4. Free motion.
Free motion means that there are no forces, so ~a = 0.
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10.4.1. Cartesian coordinates.

• In Cartesian coordinates ~a = 0 gives
ẍ = 0, ÿ = 0, x(t) = vx,0t+ x0, y(t) = vy,0t+ y0.

where constants vx,0, vy,0, x0, and y0 are obtained from the initial conditions.
• Or the trajectory

y = y0 + vy,0
vx,0

(x− x0).

This is the equation for a straight line in the Cartesian coordinates.

10.4.2. Polar coordinates.

• In the polar coordinates: ~a = 0, so both components of ~a must be zero

aφ = 0 =⇒ rφ̈+ 2ṙφ̇ = 0 =⇒ d(r2φ̇)
dt

= 0 =⇒ r2φ̇ = const = A =⇒ φ̇ = A
r2

ar = 0 =⇒ r̈ − rφ̇2 = 0 =⇒ r̈ − A2

r3 = 0
The constant A must be obtained from the initial conditions.
• Notation

∂

∂x
≡ ∂x

• Now I will do the following trick. Instead of two functions r(t) and φ(t) I will consider
a function r(φ) — the trajectory — and use
∂

∂t
= ∂φ

∂t

∂

∂φ
= φ̇

∂

∂φ
= A

r2∂φ; ṙ = A

r2∂φr = −A∂φ
1
r

; r̈ = −A
2

r2 ∂
2
φ

1
r
,

then r̈ − A2

r3 = 0 becomes

−A
2

r2 ∂
2
φ

1
r
− A2

r3 = 0, ∂2
φ

1
r

= −1
r
,

1
r

= B cos(φ− φ0)

• This is the equation of the straight line in the polar coordinates. Why? Can you
plot it?



LECTURE 11
Angular velocity. Angular momentum.

Consider a rigid body which can rotate around an axis which goes through its center of
mass. We apply a force ~F to some point of the body.

• Depending on the direction of the force the body may or may not rotate with in-
creasing frequency.
• In any case the body as a whole will not move.
• It means that the axis must apply a force −~F to the body.
• So the sum of all forces applied to the body is zero.
• What then causes the angular velocity to change?
• Consider a small piece of the body.
• Its velocity is changing! So there must be a net force acting on it.
• This is the force of interaction of our small piece with the rest of the body.
• Such forces are very difficult to compute, but
• If the body is rigid, then me know that the relative position of the points of the body
does not change.
• It turns out that this observation is enough to construct the theory of the motion of
a rigid body without the reference to the internal forces.
• However, if the body is not absolutely rigid, one has to go back, split the body into
infinitesimally small pieces and consider the motion of each piece.

11.1. Angular velocity. Rotation.

37
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11.1.1. Vector of angular velocity.

Here I show that the angular velocity is a vector. The length of this vector is the magnitude of
the angular velocity and its direction is along the axis of rotation at the direction determined
by the right hand rule.

• Consider a point P rotating around an axis with the angular velocity Ω (see the left
panel of the figure)
• This point has velocity. The magnitude of this velocity is v = Ωr⊥, where r⊥ is the
distance from P to the axis of rotation.
• Let’s take an arbitrary point O on the axis of rotation as our coordinate origin.
• The point P at some moment of time has a position vector ~r.
• The distance from P to the axis is r⊥ = r sinα.
• So the magnitude of the point P velocity is v = Ωr sinα.
• The direction of this velocity is perpendicular to both the axis of rotation and the
vector ~r.
• So if we define the vector of angular velocity ~Ω as a vector with magnitude Ω directed
along the axis (as shown), then we can write:

~v = ~Ω× ~r.

• Using the definition of the velocity ~v = ~̇r we can write the above as

~̇r = ~Ω× ~r.

• Notice the importance of this formula
– It gives not only the magnitude, but also the direction of the velocity vector ~v!
– For a rigid body it tells us, that the velocity of every infenitesimal part of the
body depends on the very same vector ~Ω. So instead of specifying the velocity
of each part separately, we can completely describe the motion by specifying the
vector ~Ω and how it changes with time (both magnitude and direction!).

This definition of the vector ~Ω is, however, incomplete, unless we show that those vectors
can be summed up and the result makes sense. Let’s do just that:

• Look at the right panel of the Figure.
• Suppose we have a pink body rotating with angular velocity ~ω. Notice, by specifying
the vector ~ω I specify both the magnitude, and the axis of the rotation.
• Suppose the axis of the rotation ~ω rotates with the angular velocity ~Ω (see figure).
• Consider two observers F — the outside observer, andM — the observer who rotates
with angular velocity ~Ω (but does not rotate with ~ω).
• Consider the point P of the pink body.
• Let’s take a moment of time t when the positions of the observer M and the position
of the point P of the pink body coincide and is given by the position vector ~R.
• From the point of view of the observer M the axis ~ω is stationary. For this observer
the point P has velocity

~v′ = ~ω × ~R.

• As seen by the observer F , the observer M is rotating with ~Ω and has a velocity

~vM = ~Ω× ~R.



LECTURE 11. ANGULAR VELOCITY. ANGULAR MOMENTUM. 39
• According to Galileo the velocity ~v of the point P of the pink body as measured by
the observer F is

~v = ~vM + ~v′.

• Taken ~vM and ~v′ from above we get

~v = ~Ω× ~R + ~ω × ~R =
(
~Ω + ~ω

)
× ~R.

• As it was done for arbitrary point P we conclude, that the outside observer F sees
the pink body rotating with the angular velocity

~ΩF = ~Ω + ~ω.

Which is exactly what we wanted — angular velocity is a vector!
Now lets consider an arbitrary vector ~l which is constant in the rotating frame. We are

interested in how it will change with time as seen from the rest (outside) frame (observer).
• We have a frame rotating with angular velocity ~ω with respect to the rest frame. A
vector ~l constant in the rotating frame will change with time in the rest frame and

~̇l = ~ω ×~l.
(this is the same as for the position vector ~r.)
• ω = dφ

dt
, if ω is a vector ~ω, then dφ must be a vector d~φ. Notice, that φ is not a

vector! while d~φ is! This is the same as in the previous lecture, where we could not
define the position vector, but could define the vector of infenitesimal displacement.
• The direction of the vector d~φ is along the axis of rotation according to the right
hand rule.
• If we rotate one frame with respect to another by a small angle d~φ, then a vector ~l
will change by

d~l = d~φ×~l.

11.2. Angular momentum.
For a particle at position ~r which has a momentum ~p we can define a vector of angular
momentum ~J :

~J = ~r × ~p.
Notice, that this definition requires you to chose the coordinate origin. If you shift the origin
the angular momentum in the new coordinate system will be different.

This definition is given for a single particle. If we have many particles we simply sum
up their angular momenta (as vectors!) to get the total angular momentum of the system of
particles.

Let’s see how the total angular momentum of a bunch of particles behaves under the
action of internal and external forces.

• Consider a bunch of particles which interact with each other by central forces. This
means that the force with which the particle j acts on particle i is along the vector
from the particle i to the particle j:

~Fij ‖ ~ri − ~rj
.
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• Also, by the Newton’s third law
~Fij = −~Fji.

• There is also external forces ~F ex
i acting on each particle.

• Consider the time evolution of the vector of the total angular momentum ~J = ∑
i ~ri×

~pi:
~̇J =

∑
i

~̇ri × ~pi +
∑
i

~ri × ~̇pi.

As ~̇ri = ~vi ‖ ~pi, each term in the first sum is zero. So we can drop the first sum. In
the second term we use ~̇pi = ∑

j 6=i
~Fij + ~F ex

i — the sum of all forces acting on the
particle i.

~̇J =
∑
i

~ri × ~̇pi =
∑
i

~ri ×

∑
j 6=i

~Fij + ~F ex
i

 =
∑
i 6=j

~ri × ~Fij +
∑
i

~ri × ~F ex
i

• The sum ∑
i ~ri × ~F ex

i is called torque. Here it is the torque of external forces ~τ ex.
• if a force ~F is applied to a point with the position ~r with respect to the origin, then
the torque of this force with respect to the same origin is given by

~τ ≡ ~r × ~F .

• Consider now the first sum in the RHS. Remember that ~Fij = −~Fji∑
i 6=j

~ri × ~Fij = 1
2
∑
i 6=j

~ri × ~Fij + 1
2
∑
i 6=j

~rj × ~Fji = 1
2
∑
i 6=j

(~ri − ~rj)× ~Fij = 0

It is zero because ~Fij is parallel to ~ri − ~rj.
• So we have

~̇J = ~τ ex

• If the torque of external forces is zero, then the angular momentum is conserved.



LECTURE 12
Moment Tensor of inertia. Kinetic energy.

In the previous lecture we considered a set of particles and showed, that if they interact
through the central forces the rate of change of angular momentum equals to the total torque
of external forces only. In proving this statement the condition of rigidity was not used at
all. The statement ~̇J = ~τ ex is very general.

In this lecture we show how to compute the angular momentum and the kinetic energy
for a rigid body. Remember, that the condition of rigidity is very strong. The equation

~v = ~ω × ~r.

allows us to compute the velocity of every point of the body by knowing only one vector ~ω.
So both the angular momentum and the kinetic energy will depend only on the vector ~ω and
some property of the body itself.

12.1. Angular momentum. Moment Tensor of inertia.
• Consider a rigid set of particles of masses mi — the distances between the particles
are fixed and do not change. The whole system rotates with the angular velocity ~ω.
Each particle has a radius vector ~ri with respect to the coordinate origin, which is
on the axis of rotation. Let’s calculate the angular momentum of the whole system.

~J =
∑
i

mi~ri × ~vi =
∑
i

mi~ri × [~ω × ~ri] =
∑
i

mi

(
~ω~r2

i − ~ri(~ω · ~ri)
)

or in components (Einstein notations are assumed over Greek indexes)

Jα =
∑
i

mi

(
ωα~r2

i − rαi ωβr
β
i

)
=
∑
i

mi

(
δαβ~r2

i − rαi r
β
i

)
ωβ = Iαβωβ,

Iαβ =
∑
i

mi

(
δαβ~r2

i − rαi r
β
i

)
• Greek indexes α and β label the coordinate components, say x, y, and z, or 1, 2, and

3. For example, if α = x, then rα=x = x, or if α = 1, then rα=1 = x if x is the first
coordinate.
• The Latin index i labels the particles: particle number 1, particle number 2, etc.

41
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• The moment of inertia is a positive definite symmetric 3× 3 tensor!

Î =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 , Iαβ = Iβα.

It transforms one vector into another:
~J = Î~ω.

• Important: As Î is a tensor and not a number the directions of the vectors ~ω and ~J
do not coincide. These two vectors can have very different directions.
• As for any symmetric tensor:

– There are special coordinate axes in which the tensor has a diagonal form – only
diagonal elements are nonzero, while all the off diagonal elements are zero. In
this very specific for the body coordinate axes the tensor of inertia has the form:

Î =

 Ix 0 0
0 Iy 0
0 0 Iz


– These diagonal elements Ix, Iy, and Iz are called PRINCIPLE MOMENTS OF
INERTIA. The corresponding axes are called PRINCIPAL AXES OF INERTIA.

– If all the principal moments are different, then the principle axes are orthogonal
to each other.

– In a degenerate case these axes can be chosen to be orthogonal.
– These principle axes are “attached” to the body, so if the body is rotating, then
these axes are also rotating with the body.

• The direction of the angular momentum ~J and direction of the angular velocity ~ω
do not in general coincide!
• It is ~J which is constant when there are no external torques, not ~ω! Let me repeat
it: If there are no external torques the vector ~ω may change with time — both its
direction and magnitude. But the angular momentum vector ~J will remain constant.

Contrast this to the usual momentum-velocity relation
~p = m~v

where the conservation of momentum means that the velocity is also constant. This
is because the mass m is a scalar, not tensor.
• This last statement makes even the kinematics (motion with no external forces) of a
rigid body very complicated and highly non-trivial.

12.2. Kinetic energy.
• Consider the kinetic energy of the moving body.

K = 1
2
∑
i

mi~v
2
i = 1

2
∑
i

mi[~ω × ~ri]2 = 1
2
∑
i

mi[~ω2~r2 − (~ω · ~r)2] = 1
2
∑
i

mi[δαβ~r2 − rαrβ]ωαωβ.

so we get

K = Iαβωαωβ

2
(Einstein notations are assumed over Greek indexes)
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• This also shows that Î is positive definite, as the kinetic energy MUST be positive
(look at the first equality, it is a sum of non-negative numbers!) for ANY vector ~ω.
• In terms of angular momentum:

K = 1
2
(
Î−1

)αβ
JαJβ.

12.3. Tensor of inertia for a continuous body.
• First, we chose a system of coordinates.
• We split the body into infinitesimally small pieces. Each piece has its coordinate
vector ~r and its mass dm(~r).
• Tensor of inertia of a continuous body.

Iαβ =
∫ (

δαβ~r2 − rαrβ
)
dm =

∫ (
δαβ~r2 − rαrβ

) dm
dV

dV =
∫ (

δαβ~r2 − rαrβ
)
ρ(~r)dV,

where ρ(~r) is the mass density of the material at point ~r – it must be know as this
is a characteristic of the body.
• How to compute the moment of inertia of an arbitrary body.

– First you chose a system of coordinates registered with the body.
– You chose which component of the tensor of inertia you want to compute. You
have to compute all of them, but you need to start with something. Let’s say it
is Ixy.

– Then in the expression
∫ (
δαβ~r2 − rαrβ

)
ρ(~r)dV we have α = x and β = y, or

Ixy =
∫

(δxy~r2 − rxry) ρ(~r)dV
– The first term under the integral is then zero, as δxy = 0.
– In the second term rα=x = x, and rβ=y = y, so we have

Ixy = −
∫∫∫
V

xyρ(x, y, z)dxdydz.

– Let’s say we want to compute Ixx. Then α = x, and β = x, so the first term
δαβ~r2 = δxx(x2 + y2 + z2) = x2 + y2 + z2, as δxx = 1, and ~r2 = x2 + y2 + z2. The
second term is just rxrx = x2. So we need to compute

Ixx =
∫∫∫ (

y2 + z2
)
ρ(x, y, z)dxdydz.

12.3.1. Examples.

• Tensor of inertia for a 2D object. Let σ(x, y) be the area mass density. The object
is in xy plane, its z coordinate is zero z = 0 for all small pieces! Then

Izz =
∫∫
S

(x2 + y2)σ(x, y)dxdy, Ixx =
∫∫
S

y2σ(x, y)dxdy, Iyy =
∫∫
S

x2σ(x, y)dxdy.

So
Izz = Ixx + Iyy.

• A thin ring: Izz = mR2, Ixx = Iyy = 1
2mR

2, all off diagonal elements vanish.
• A disc: Izz = 1

2mR
2, Ixx = Iyy = 1

4mR
2, all off diagonal elements vanish.

• A sphere: Ixx = Iyy = Izz = 2
5mR

2, all off diagonal elements vanish.
• A stick at the end: Ixx = Iyy = 1

3mL
2.
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• A stick at the center: Ixx = Iyy = 1
12mL

2.
• Role of symmetry.



LECTURE 13
Work. Potential energy.

13.1. Mathematical preliminaries.
• Functions of many variables, say U(x, y).

– The most important part is to understand what is a function and what is not a
function: A function of, say two variables x and y is a map from the (x, y) plane
to a number line U . This means that a point on the (x, y) plane has ONLY
ONE image in U under this map.
We all now examples of functions. An example of a “not function” would be
a multi-story building. A person in such building with coordinates x and y on
the ground may have different height, as he/she can be on any floor. Thus we
cannot map a position on the (x, y) plane to the position on the vertical line z.
In case of the multi-story building one may try to have separate functions for
each floor. However, there are stairs, so a person can move from floor to floor.

• Differential of a function of many variables.

dU = ∂U

∂x
dx+ ∂U

∂y
dy.

– The meaning of this expression is that at any (2D in this case) point the surface
looks like a plane.

– We know that this is correct for any function.
– We can ask the opposite question: if we have an expression of the type as above,
will there be a function which has this expression as a differential.

• Consider an expression

δG = A(x, y)dx+B(x, y)dy.

where A and B are some arbitrary functions. The question is: is this a differential
of some function? The answer is: not necessarily. The proof:
– Let’s assume that δG is a differential of some function U , then we must have

A = ∂U

∂x
, B = ∂U

∂y
.
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– But then
∂A

∂y
= ∂2U

∂x∂y
= ∂B

∂x
.

– So δG is a differential of some function if (and only if)
∂A

∂y
= ∂B

∂x

– In other words, if the condition above is satisfied, then there exists a function
U(x, y) such that

A(x, y) = ∂U(x, y)
∂x

, B(x, y) = ∂U(x, y)
∂y

.

– Then the statement that the form δG is a differential is a very strong statement,
as it tells you that in order to know two functions A(x, y) and B(x, y) you need
to know only one function U(x, y).

• Examples.
– δG = xdy + ydx is a differential U = xy.
– δG = xdy − ydx is not a differential. The function U does not exist.

13.2. Work.

Suppose we have a force field: ~F (x, y) — it means that if we place a particle in a point (x, y)
this particle will experience force ~F (x, y).

• A work done by a force: δW = ~F · d~r.
• Notice, that although δW = Fxdx+ Fydy + Fzdz this is not necessarily a full differ-
ential.
• Superposition. If there are many forces, the total work is the sum of the works done
by each.
• Finite displacement. Line integral.

WA→B =
∫

ΓA→B
~F · d~r

• This formula tells us that we need to know the path ΓA→B, we split the path into
infinitesimal displacements d~r, on each displacement we compute work δW = ~F · d~r,
then we sum up all δW s for all displacements.
• IMPORTANT: In general case work depends on path!!!!!
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13.3. Conservative forces. Potential energy.

• Fundamental forces. Depend on coordinates, do not depend on time.
• Work done by the forces over ANY closed loop is zero!!!!! One can not get work from
nothing.
• It means that work is independent of the path! see left panel of the figure.
• Look at the right panel. Consider two paths from point (x, y) to point (x+dx, y+dy):
first dx, then dy (blue path); first dy then dx (red path)

δW1 = Fx(x, y)dx+ Fy(x+ dx, y)dy = Fx(x, y)dx+ Fy(x, y)dy + ∂Fy
∂x

dydx

δW2 = Fy(x, y)dy + Fx(x, y + dy)dx = Fy(x, y)dy + Fx(x, y)dx+ ∂Fx
∂y

dydx.

where we used Fy(x + dx, y) ≈ Fy(x, y) + ∂Fy
∂x
dx, and Fx(x, y + dy) ≈ Fx(x, y)dx +

∂Fx
∂y
dy.

• The works must be equal to each other, δW1 = δW2, so we must have
∂Fy
∂x

∣∣∣∣∣
x,y

= ∂Fx
∂y

∣∣∣∣∣
x,y

• So small work done by a conservative force:

δW = Fxdx+ Fydy,
∂Fy
∂x

= ∂Fx
∂y

is a full differential!
• In other words, there exist a function U such that

δW = −dU
(the minus sign is for further convenience)
• It means that there is such a function of the coordinates U(x, y), that

Fx = −∂U
∂x

, Fy = −∂U
∂y

, or ~F = −gradU ≡ −~∇U.

• This function U is called “potential energy function”, or just “potential energy”.





LECTURE 14
Energy Conservation. One-dimensional motion.

• Last lecture we found, that there exists a special class of forces (which depend only
on coordinates) which are called “conservative forces”.
– Not all forces are conservative! Friction!
– All fundamental forces are conservative.

• A conservative force is such a force that its work around any closed loop is zero.
• Last lecture we found that for a conservative (zero work on a closed loop) force there
exists a function U — called “potential energy” such that

Fx = −∂U
∂x

, Fy = −∂U
∂y

, or ~F = −gradU ≡ −~∇U.

Such function is not unique as one can always add an arbitrary constant to the
potential energy.
• Under a small displacement d~r a work done by such a force is

δW = ~F · d~r = Fxdx+ Fydy + Fzdz = −dU.

• If the force ~F (~r) is known, then there is a test for if the force is conservative.

∇× ~F = 0.

14.1. Change of kinetic energy.
• If a body of mass m moves under the force ~F , then.

m
d~v

dt
= ~F , md~v = ~Fdt, m~v · d~v = ~F · ~vdt = ~F · d~r = δW.

So we have
d
mv2

2 = δW

• The change of kinetic energy K = mv2

2 equals the total work done by all forces.
• In general case this is not very useful, as we need to know the path ΓA→B from the
initial point A to the final point B in order to compute work.

W =
∫

ΓA→B
~F · d~r.

In order to know the path ΓA→B we need to solve the equations of motion.
49
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14.1.1. Conservative forces.

For the conservative forces the situation simplifies considerably.
• On a trajectory we have dK = δW = −dU , or

d

(
mv2

2 + U

)
= 0, K + U = const.

• Potential energy is defined up to a constant. In particular, one can always choose a
point of space and set the potential energy at this point to be zero.
• Examples.

14.2. 1D motion.
For the motion in 1D things become even simpler, as we always know the trajectory — it is
1D!

• In 1D the force that depends only on the coordinate is always conservative.
• In 1D in the case when the force depends only on coordinates the equation of motion
can be solved in quadratures.
• The number of conservation laws is enough to solve the equations.
• If the force depends on the coordinate only F (x), then there exists a function —
potential energy — with the following property

F (x) = −∂U
∂x

, U(x) = −
∫ x

arb. point.
F (x′)dx′.

Such a function is not unique as one can always add an arbitrary constant to the
potential energy, which means to choose the lower limit of integration to be an
arbitrary point.

We want to solve the following problem: A particle of mass m can move in 1D. There
is force F (x) which acts on the particle when the particle is at point x. The particle starts
moving at time t = t0 from the initial position x0 with initial velocity v0. We need to find
the function x(t).

• The total energy is then conserved

K + U = const., mẋ2

2 + U(x) = E,
mẋ2

2 = E − U(x).

• Energy E can be calculated from the initial conditions: E = mv2
0

2 + U(x0).
• Let’s plot the function U(x) and draw a horizontal line E on the same plot, see figure.
• As mv2

2 > 0 the allowed areas where the particle can be are given by E − U(x) > 0.
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• Picture. Turning points — the solutions of the equation E = U(x). Prohibited
regions.
• Notice, that the equation of motion depends only on the difference E − U(x) =

mv2
0

2 + U(x0) − U(x) of the potential energies in different points, so the zero of the
potential energy (the arbitrary constant that was added to the function) does not
play a role.
• We thus found that

dx

dt
= ±

√
2
m

√
E − U(x)

• Energy conservation law cannot tell the direction of the velocity, as the kinetic energy
depends only on absolute value of the velocity. In 1D it cannot tell which sign to
use “+” or “−”. You must not forget to figure it out by other means.
• We then can solve the equation

±
√
m

2
dx√

E − U(x)
= dt, t− t0 = ±

√
m

2

∫ x(t)

x0

dx′√
E − U(x′)

• Examples:
– Motion under a constant force: U(x) = −mgx.
– Oscillator: U(x) = kx2

2 .
– Pendulum: U(x) = lgm(1− cosφ).

• Periodic motion. Period between two turning points xL and xR (period is time which
it take the particle to go from the point xL to the point xR and back to the point
xL.)

T = 2
√
m

2

∫ xR

xL

dx′√
E − U(x′)

, U(xL,R) = E.

• Only two types of motion is possible in 1D (in potential field): periodic and un-
bounded.





LECTURE 15
Spherical coordinates. Central forces.

15.1. Spherical coordinates.
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15.1.1. Coordinate vectors of spherical coordinates.

• The spherical coordinates are given by

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ
r ∈ [0,∞), θ ∈ [0, π], φ ∈ [0, 2π)

.

• The coordinates r, θ, and φ can be used to denote any point.
• There are corresponding unit vectors êr, êθ, and êφ at each point (r, θ, φ).

– The vector êr is the unit vector along the direction where our point shifts if we
change the coordinate r, while keeping θ and φ constant.

– The vector êθ is the unit vector along the direction where our point shifts if we
change the coordinate θ, while keeping r and φ constant.

– The vector êφ is the unit vector along the direction where our point shifts if we
change the coordinate φ, while keeping θ and r constant.

• With such definitions of êr, êθ, and êφ we see, that
– If we change only coordinate r to r + dr, then the position vector ~r changes by
d~r = êrdr.

– If we change only coordinate θ to θ + dθ, then the position vector ~r changes by
d~r = êθrdθ.

– If we change only coordinate φ to φ+ dφ, then the position vector ~r changes by
d~r = êφr sin θdφ.

• The vector d~r then is expressed through the dr, dθ and dφ as

d~r = êrdr + êθrdθ + êφr sin θdφ.

• In Cartesian coordinates the similar expression is

d~r = êxdx+ êydy + êzdz.

• Notice, that in this formulation we do not need to have the position vector ~r. We
can do everything with the coordinate vectors defined locally.

15.1.2. Connecting Spherical and Cartesian.

Here I show how to connect êx, êy, êz, to êr, êθ, êφ using only local relations.
• Using the definition of the spherical coordinates we have locally

dx = dr sin θ cosφ+ dθr cos θ cosφ− dφr sin θ sinφ
dy = dr sin θ sinφ+ dθr cos θ sinφ+ dφr sin θ cosφ
dz = dr cos θ − dθr sin θ

• Using these expressions in d~r is Cartesian coordinates d~r = êxdx + êydy + êzdz and
collecting all the terms with dr, dφ and dθ we find

d~r = (êx sin θ cosφ+ êy sin θ sinφ+ êz cos θ) dr + (êx cos θ cosφ+ êy cos θ sinφ− êzr sin θ) rdθ
+ (−êx sinφ+ êy cosφ) r sin θdφ
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• Comparing this to the d~r in spherical coordinates d~r = êrdr+ êθrdθ+ êφr sin θdφ we
get

êr = êx sin θ cosφ+ êy sin θ sinφ+ êz cos θ
êθ = êx cos θ cosφ+ êy cos θ sinφ− êz sin θ
êφ = −êx sinφ+ êy cosφ

15.1.3. Coordinate independent definition of the gradient.

We will need to deal with the potential energy in 3D space. We will also need to deal with
the force ~F = −~∇U in 3D. Let’s discuss these objects in some detail.

• Let’s denote U a scalar function in our space. This means that in every point P
of space we have a number U which is different in different points, but it changes
smoothly.
• So we think of U as a map from all points of space to the space of numbers.
• Notice, that only this map matters, as a particle moving in the potential energy U
knows nothing about the coordinates, it “knows” only about the point of space where
it is at.
• If we use Cartesian coordinates, then a point P will have coordinates (x, y, z), and
the function can be represented as U(x, y, z).
• If we use spherical coordinates, then a point P will have coordinates (r, θ, φ), and
the function can be represented as U(r, θ, φ). But it is the same map.
• The force is −~∇U . This force is a vector field. At each point of space there is a vector
−~∇U . Again the particles moving in the space knows nothing about the coordinates,
but “knows” about the vector −∇U at the point of space where it is at.
• Imagine now that we work in the spherical coordinates, and we want to find the
components of a vector ~∇U in the spherical coordinates.
• In order to do that we need to define the gradient vector ~∇U in a coordinate inde-
pendent way. (Remember, it is a vector, vectors are independent of coordinates!)
• Consider a function U as a function of Cartesian coordinates: U(x, y, z). Then

dU = ∂U

∂x
dx+ ∂U

∂y
dy + ∂U

∂z
dz = ~∇U · d~r.

Notice, that we have a coordinate independent definition of the vector gradient. The
vector of gradient ~∇U is such a vector that for ANY vector d~r we have:

dU = ~∇U · d~r — definition of ~∇U.

It is coordinate independent as it is a scalar/dot product which does not depend on
coordinates.
• I want to make a few points about this definition.

– This definition is constructive – it allows one to find the vector of gradient
in any system of coordinates. For this it is important that d~r is an arbitrary
infinitesimal vector.

– It connects calculus dU with geometry — the scalar product of two vectors.
– It thus gives the geometrical meaning/picture to calculus. In particular one can
see that if one chooses a vector d~r⊥ which is perpendicular to the vector of the
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gradient at some particular point, then the function U will not change along the
direction of d~r⊥ (in the infinitesimal neighborhood of that point).

• Let’s see how this definition works in Cartesian coordinates.
– In particular, if we use the standard Cartesian coordinates and write the vector
of gradient as

~∇U = (~∇U)xêx + (~∇U)yêy + (~∇U)z êz,
where (~∇U)x, (~∇U)y, and (~∇U)z are the components of the vector ~∇U in Carte-
sian coordinates. These are the components which we want to find.

– Using the vector d~r in Cartesian coordinate we find
dU = ~∇U · d~r = (~∇U)xdx+ (~∇U)ydy + (~∇U)zdz

– Consider a function U as the function of Cartesian coordinates U(x, y, z), we
know from the standard calculus

dU = ∂U

∂x
dx+ ∂U

∂y
dy + ∂U

∂z
dz

– Comparing these to results for dU (both are valid for arbitrary infinitesimal dx,
dy, and dz) we find

(~∇U)x = ∂U

∂x
, (~∇U)y = ∂U

∂y
, (~∇U)z = ∂U

∂z
.

– This is our standard formulas for the gradient in Cartesian coordinates.
• Now we can use this procedure for any other system of coordinates, as long as we
know how to express d~r in the corresponding coordinate vectors.

15.1.4. Gradient in spherical coordinates.

• Let’s write the vector ~∇U in the spherical coordinates.
~∇U = (~∇U)rêr + (~∇U)θêθ + (~∇U)φêφ,

where (~∇U)r, (~∇U)θ, and (~∇U)φ are the components of the vector ~∇U in the spher-
ical coordinates. It is those components that we want to find.
• By the definition of the gradient vector, and using d~r in spherical coordinates we get

dU = ~∇U · d~r = (~∇U)rdr + (~∇U)θrdθ + (~∇U)φr sin θdφ
• On the other hand if we now consider U as a function of the spherical coordinates
U(r, θ, φ), then

dU = ∂U

∂r
dr + ∂U

∂θ
dθ + ∂U

∂φ
dφ

• Comparing the two expressions for dU we find
(~∇U)r = ∂U

∂r

(~∇U)θ = 1
r
∂U
∂θ

(~∇U)φ = 1
r sin θ

∂U
∂φ

.

• The vector of gradient in spherical coordinates is then written as

~∇U = ∂U

∂r
êr + 1

r

∂U

∂θ
êθ + 1

r sin θ
∂U

∂φ
êφ



LECTURE 16
Effective potential. Kepler orbits.

16.1. Results of the last lecture
• The coordinate independent definition of gradient of function U is

dU = ~∇U · d~r, for ANY d~r.

• In Cartesian coordinates this definition gives

~∇U = ∂U

∂x
êx + ∂U

∂y
êy + ∂U

∂z
êz.

• In Spherical coordinates the same definition gives

~∇U = ∂U

∂r
êr + 1

r

∂U

∂θ
êθ + 1

r sin θ
∂U

∂φ
êφ

16.2. Central force. General.
• If U is the potential energy, then in spherical coordinates

~F = −~∇U = −∂U
∂r

êr −
1
r

∂U

∂θ
êθ −

1
r sin θ

∂U

∂φ
êφ.

• Consider a motion of a body under central force. This can be a Coulomb force from
a point like charge, or Newtonian gravity, or any other.
• Take the coordinate origin in the center of force.
• A central force then is given by (this is the definition of the central force)

~F = F (r)êr.

• Such a force is always conservative: ~∇× ~F = 0, so there is a potential energy U such
that:

~∇U = −F (r)êr
comparing this with the ~∇U in spherical coordinate, we find

∂U

∂r
= −F (r), ∂U

∂θ
= 0, ∂U

∂φ
= 0,
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so that potential energy depends only on the distance r, U(r). and

F (r) = −∂U
∂r

• The torque of the central force τ = ~r× ~F = 0, so the angular momentum is conserved:
~J = const.

16.3. Motion in under central force.
Consider now a particle of mass m which is moving in the central force field. The field is
completely described by the potential energy function U(r). We set this function such, that
U(r →∞)→ 0.

In order to set up the problem we must also specify the initial conditions. So we know
that at some time t = 0 the velocity of the particle is ~v0 and the position is ~r0.

We have two independent conservation laws: conservation of angular momentum and
conservation of energy. Both angular momentum and energy can be computed from the
initial conditions:

~J = ~r0 ×m~v0, E = mv2
0

2 + U(r0).

Let’s see how we can use these conservation laws.

16.3.1. Angular momentum conservation.

• The direction of ~J is perpendicular to the initial momentum and initial coordinate.
• During the motion the direction of ~J will not change — it is conserved.
• So during the motion at any moment the momentum and position vectors will be in
the same plane perpendicular to ~J .
• The motion is all in one plane! The plane which contains the vector of the initial
velocity and the initial radius vector. As it contains the initial position vector, this
plane contains the center of the force.
• We take the direction of ~J as our z axis. The plane of motion is then x− y plane.
• The angular momentum is ~J = J~ez, where J = | ~J | = const.. This constant is given
by initial conditions J = m|~r0 × ~v0|.
• In the x− y plane the spherical coordinate θ = π/2 we can use only r and φ coordi-
nates — the polar coordinates.
• Writing the value of the angular momentum at any moment of time, and using
~v = ṙer + rφ̇êφ, ~r = rêr in the polar coordinates we get

~J = m~r × ~v = mr2φ̇êr × êφ = mr2φ̇êz

or
mr2φ̇ = J, φ̇ = J

mr2

Notice: The last equation means that if we know r(t) we will be able to compute
φ(t)!

φ(t)− φ0 = J

m

∫ t

0

dt′

r2(t′) .

So we only need to find r(t)!
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• The use of the conservation of the angular momentum ~J allowed us to simplify the
problem of the motion in three dimension to a problem of finding just one function!

16.3.2. Energy conservation.

• The velocity in these polar coordinates is

~v = ṙ~er + rφ̇~eφ = ṙ~er + J

mr
~eφ

• The kinetic energy then is

K = m~v2

2 = mṙ2

2 + J2

2mr2

• The total energy then is

E = K + U = mṙ2

2 + J2

2mr2 + U(r).

• If we introduce the effective potential energy

Ueff (r) = J2

2mr2 + U(r),

then we have
mṙ2

2 + Ueff (r) = E, mr̈ = −∂Ueff
∂r

• This is a one dimensional motion in the potential Ueff which was solved before!

16.4. Kepler orbits.
Historically, the Kepler problem —
the problem of motion of the bod-
ies in the Newtonian gravitational
field — is one of the most impor-
tant problems in physics. It is the
solution of the problems and exper-
imental verification of the results
that convinced the physics commu-
nity in the power of Newton’s new
math and in the correctness of his
mechanics. For the first time peo-
ple could understand the observed
motion of the celestial bodies and
make accurate predictions. The
whole theory turned out to be much

simpler than what existed before.
• In the Kepler problem we want to consider the motion of a body of mass m in the
gravitational central force due to much larger mass M .
• AsM � m we ignore the motion of the larger massM and consider its position fixed
in space (we will discuss what happens when this limit is not applicable later) For
now we take the position of M as our center of the force and the coordinate origin.



60 FALL 2014, ARTEM G. ABANOV, ADVANCED MECHANICS I. PHYS 302

• The force that acts on the mass m is given by the Newton’s law of gravity:

~F = −GmM
r3 ~r = −GmM

r2 ~er

where ~er is the direction from M to m.
• The potential energy is then given by

U(r) = −GMm

r
, −∂U

∂r
= −GmM

r2 , U(r →∞)→ 0

• The effective potential is

Ueff (r) = J2

2mr2 −
GMm

r
,

where J is the angular momentum.
• For the Coulomb potential we will have the same r dependence, but for the like
charges the sign in front of the last term is different — repulsion.
• In case of attraction for J 6= 0 the function Ueff (r) always has a minimum for some
distance r0. It has no minimum for the repulsive interaction.
• Looking at the graph of Ueff (r) we see, that

– for the repulsive interaction there can be no bounded orbits. The total energy
E of the body is always positive. The minimal distance the body may have with
the center is given by the solution of the equation Ueff (rmin) = E.

– for the attractive interaction there is a minimum of the effective potential energy
at r = r0 which is given by the equation

∂Ueff
∂r

∣∣∣∣∣
r=r0

= 0, r0 = J2

Gm2M
.

and U(r0) < 0, where U(r →∞)→ 0. Then, from the graph U(r) we see
∗ if E > 0, then the motion is not bounded. The minimal distance the
body may have with the center is given by the solution of the equation
Ueff (rmin) = E.
∗ if Ueff (r0) < E < 0, then the motion is bounded between the two real
solutions of the equation Ueff (r) = E gives both rmin and rmax. One of
the solution is larger than r0, the other is smaller.
∗ if Ueff (r0) = E, then the only solution is r = r0. So the motion is around
the circle with fixed radius r0. For such motion we must have
mv2

r0
= GmM

r2
0

,
J2

mr3
0

= GmM

r2
0

, r0 = J2

Gm2M
.

Notice, that this is exactly r0 that we found before. Also

Ueff (r0) = E = mv2

2 − GmM

r0
= −1

2
GmM

r0
.



LECTURE 17
Kepler orbits continued.

Kepler orbits are orbits of the planets and other bodies in the sun’s gravitation field. The
mass of the sun is much larger, than the mass of any other body in the solar system. So we
ignore the motion of the sun (the gravitation force which acts on the body will also act on
the sun, by Newton’s third law).

If M is the mass of the sun, and m is the mass of the body, then the Newton gravitation
force is

~F = −GMm

r2 er.

It is a central force. The corresponding potential energy U(r) with the condition U(r →
∞)→ 0 is

U(r) = −GMm

r
.

It is an attractive force. The effective potential energy is

Ueff (r) = J2

2mr2 + U(r) = J2

2mr2 −
GMm

r
.

• In the motion the angular momentum and the energy are conserved

J = mr2φ̇, E = mṙ2

2 + Ueff (r)

• All motion happens in one plane.
• In that plane we describe the motion by two time dependent polar coordinates r(t)
and φ(t). The dynamics is given by the angular momentum conservation and the
effective equation of motion for the r coordinate.
• The effective equation for the r coordinate is obtained by differentiating energy with
respect to time.

φ̇ = J

mr2 , mr̈ = −∂Ueff (r)
∂r

,

These equations must be supplied with the initial conditions — initial position r(t =
0), φ(t = 0), and initial velocities ṙ(t = 0) and φ̇(t = 0). The value of the angular
momentum J must be found from the initial conditions.
• This system of equations is complete. The solution will give us the functions r(t)
and φ(t) — the position of the body as a function of time.
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• One can think of these solution as a parametric form (with t as a parameter) of a
trajectory/path of the object.
• For now I am not interested in the time evolution and only want to find the trajectory
(the path) of the body. This trajectory is given by the function r(φ).
• However, if we know r(φ), we can solve

φ̇ = J

mr2(φ) ,
m

J
r2(φ)dφ = dt

and find φ(t). Then we will also have r(φ(t)). Thus one can consider finding of r(φ)
as the first step in full solution.
• In order to find r(φ) I will use the trick we used before

ṙ = dr

dt
= dφ

dt

dr

dφ
= J

mr2
dr

dφ
= − J

m

d(1/r)
dφ

,
d2r

dt2
= dφ

dt

dṙ

dφ
= − J2

m2r2
d2(1/r)
dφ2

• On the other hand
∂Ueff
∂r

= −J
2

m
(1/r)3 +GMm (1/r)2 .

• Now I denote u(φ) = 1/r(φ) and get

−J
2

m
u2 d

2u

dφ2 = J2

m
u3 −GMmu2

or, denoting d2u
dφ2 ≡ u′′

u′′ = −u+ GMm2

J2 .

• The general solution of this equation is

u = GMm2

J2 + A cos(φ− φ0),

where A and φ0 are arbitrary constants.
• We can put φ0 = 0 by redefinition.
• Before I do that, I want to point out that this is cheating. The constants A and
φ0 should be obtained from the initial conditions. So unless we know how to get φ0
from the initial conditions we cannot redefine our system of coordinates to measure
the angle from the direction of φ0. However, we know that such redefinition exists.
We will discuss the issue of finding φ0 from the initial conditions later and now we
just go ahead and redefine φ.
• So by setting φ0 = 0 we have

1
r

= γ + A cosφ, γ = GMm2

J2

This is the equation of the trajectory/path r(φ). Both ε and γ should be found from
the initial conditions.
• If γ = 0 this is the equation of a straight line in the polar coordinates. Indeed γ = 0
means that one of the masses is zero, or the angular momentum is huge, then the
gravitation force has a negligible effect on the motion of the body.
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• A more conventional way to write the trajectory is

1
r

= 1
c

(1 + ε cosφ) , c = J2

GMm2 = 1
γ

where ε > 0 is dimentionless number.
• We see that, that there are three different cases, which need to be considered sepa-
rately.
– 0 < ε < 1.
– ε > 1.
– ε = 1.
– There is another case of ε→∞. The only way to make this limit meaningful is
to also take c→∞ in such a way as to have ε/c is finite. In this case 1

r
= ε

c
cosφ

— the trajectory is the straight line. c → ∞ means J → ∞. So the planet is
either moving too far, or moving too fast.

– In case ε = 0, the orbit is just a circle r = c.

17.0.1. The case of 0 < ε < 1.

In this case, ε < 1, the equation 1
r

= 1
c
(1+ε cosφ) describes an ellipse in polar coordinates.

ε is called the eccentricity of the ellipse, it controls the “shape” of the ellipse, while c has a
dimension of length and it controls the “size” of the ellipse.

• If the minimal and maximal distance to the center — the perihelion and aphelion
are at φ = 0 and φ = π respectively.

rmin = c

1 + ε
, rmax = c

1− ε
• If we know c and ε we know the orbit, so we must be able to find out J and E from
c and ε. By definition of c we find

J2 = cGMm2.

In order to find E, we notice, that at r = rmin, ṙ = 0, so at this moment v = rminφ̇ =
J/mrmin, so the kinetic energy K = mv2/2 = J2/2mr2

min, the potential energy is
U = −GmM/rmin. So the total energy is

E = K + U = −1− ε2
2

GmM

c
, J2 = cGMm2,

Indeed we see, that if ε < 1, E < 0 and the orbit is bounded.
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• The ellipse can be written as
(x+ d)2

a2 + y2

b2 = 1,

with
a = c

1− ε2 , b = c√
1− ε2

, d = aε, b2 = ac.

• One can check, that the position of the large mass M is one of the focuses of the
ellipse — NOT ITS CENTER!
• This is the first Kepler’s law: all planets go around the ellipses with the sun at
one of the foci.

17.0.2. The case of ε > 1.

• In this case 1 + ε cosφ is zero at φ = ±φ0, where cosφ0 = −1/ε > −1.
• It means that r(φ→ ±φ0)→∞.
• So if ε > 1, then the trajectory is unbounded.
• This also can be seen from the fact, that E = −1−ε2

2
GmM
c

> 0. As we know, for
E > 0 the trajectory is unbounded.
• The equation 1

r
= 1

c
(1+ε cosφ) describes a hyperbola with the sun at the focal point.

17.0.3. The case of ε = 1.

• In this case 1 + cosφ is zero at φ = ±π, which is the direction straight “back”.
• It means that r(φ→ ±π)→∞.
• So if ε = 1, then the trajectory is unbounded.
• This also can be seen from the fact, that E = −1−ε2

2
GmM
c

= 0. As we know, for
E = 0 the trajectory is unbounded.
• The equation 1

r
= 1

c
(1 + cosφ) describes a parabola with the sun at the focal point.



LECTURE 18
Another derivation. A hidden symmetry.

18.1. Kepler’s first law
In the previous lecture we found that:

• All bodies’ trajectories in the attractive potential field U(r) ∼ −1/r are
– ellipses with the sun in one of the focal points if E < 0.
– hyperbolas with the sun in the focal point if E > 0.
– parabolas with the sun in the focal point if E = 0.

18.2. Kepler’s second law

The conservation of the angular momentum reads
1
2r

2φ̇ = J

2m.

We see, that in the LHS the rate at which a line from the sun to a comet or planet sweeps
out area:

dA

dt
= J

2m.

This rate is constant! — independent of time. So
• Second Kepler’s law: A line joining a planet and the Sun sweeps out equal areas
during equal intervals of time.
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18.3. Kepler’s third law

Consider now the closed orbits only. There is a period T of the rotation of a planet around
the sun. We want to find this period.

The total area of an ellipse is A = πab, so as the rate dA/dt is constant the period is

T = A

dA/dt
= 2πabm

J
,

Now we square the relation and use b2 = ac and c = J2

GMm2 to find

T 2 = 4π2m
2

J2 a
3c = 4π2

GM
a3

Notice, that the mass of the planet and its angular momentum canceled out! so
• Third Kepler’s law: For all bodies orbiting the sun the ratio of the square of the
period to the cube of the semimajor axis is the same.

This is one way to measure the mass of the sun. For all planets one plots the cube of the
semimajor axes as y and the square of the period as x. One then draws a straight line through
all points. The slope of that line is GM/4π2.

18.4. Another way.
• Another way to solve the problem is starting from the following equations:

φ̇ = J

mr2(t) ,
mṙ2

2 + Ueff (r) = E, Ueff (r) = J2

2mr2 + U(r).

• For now we am not interested in the time evolution and only want to find the tra-
jectory of the body. This trajectory is given by the function r(φ). In order to find it
we express ṙ from the second equation

ṙ =
√

2
m

√
E − Ueff (r)

and divide it by φ̇ from the first. We then find

dr

dφ
= dr/dt

dφ/dt
= ṙ

φ̇
= r2

√
2m
J2

√
E − Ueff (r),
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or

J√
2m

dr

r2
√
E − Ueff (r)

= dφ,
J√
2m

∫ r

rinit

dr′

r′2
√
E − Ueff (r′)

= φ− φinit,

where E, ~J , φinit, and rinit (total 6) are given by initial conditions.
• These formulas give the trajectory for any central potential U(r).
• For the ∼ 1/r potential the integral becomes a standard one after substitution x =

1/r.

18.5. A hidden symmetry.
Let’s assume, that we have some central attractive potential U(r), which decays to zero at
infinity.

• The problem is mapped to a one dimensional problem for the coordinate r and
effective potential energy Ueff (r) = J2

2mr2 + U(r).
• For total energy E < 0 we have bounded motion for r between rmin and rmax.
• We can compute the time Tr for a particle to go from rmin to rmax and back

Tr =
√

2m
∫ rmax

rmin

dr√
E − Ueff (r)

, where rmin and rmax are the solutions of E = Ueff (r).

Notice, that this period is a function of energy and angular momentum: Tr(E, J).
• We can also compute r(t), as we have done in the lecture 14.
• We then can compute the time Tφ it takes for the angle φ to change by 2π

dφ = J

mr2(t)dt, 2π = J

m

∫ Tφ

0

dt

r2(t) .

Notice, that this time will also be some function of energy and angular momentum:
Tφ(E, J)
• The two times Tr(E, J) and Tφ(E, J) do not necessarily coincide.
• It is only for a very special potential energy function U(r) that Tr(E, J) and Tφ(E, J)
coincide for ANY E and J !
• There are only two such functions U(r) ∼ 1/r and U(r) ∼ r2.

If Tr 6= Tφ the orbit is bounded, but not closed — this is the general situation.
It is a very special property of the gravitational (or Coulomb) potential that Tr = Tφ for

ANY E and J . This symmetry requires an explanation.
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If U(r) is the gravitation potential energy with a small correction this discrepancy between
Tr and Tφ is small. The orbit is almost closed, or one can say that it precesses.



LECTURE 19
Conserved Laplace-Runge-Lenz vector.

19.1. What we have learned.
• A central force field can be presented by a potential energy function U(r). We choose
the arbitrary constant such that U(r →∞)→ 0.
• The initial conditions ~r(t = 0) = ~rinit, ~̇r(t = 0) = ~vinit.
• The vector of angular momentum is conserved and can be computed in from the
initial conditions ~J = m~rinit × ~vinit.
• The energy is also conserved and can be computed from the initial conditions E =

mv2
init
2 + U(rinit).

• The motion happens in one plane perpendicular to ~J .
• In that plane the motion is easier to describe in the polar coordinates r and φ. The
initial conditions can be translated to:

r(t = 0) = rinit, ṙ(t = 0) = ṙinit, φ(t = 0) = φinit, φ̇(t = 0) = φ̇init

Through these initial conditions we also can compute the value/magnitude of angular
momentum J = mr2

initφ̇init and the total energy E = mṙ2
init
2 + J2

2mr2
init

+ U(rinit).
• If the total energy is negative, then the orbit is bounded — the object always stays
at finite distance from the center.
• We can construct the effective potential energy

Ueff (r) = U(r) + J2

2mr2

• We the can compute the functions r(t) and φ(t).

t = ±
√
m

2

∫ r(t)

rinit

dr′√
E − Ueff (r′)

, φ(t) = φinit + J

2m

∫ t

0

dt′

r2(t′)

The first equation gives r(t) implicitly.
• We can compute two different periods

Tr =
√

2m
∫ rmax

rmin

dr′√
E − Ueff (r′)

, 2π = J

2m

∫ Tφ

0

dt′

r2(t′)
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where rmin and rmax are the shortest and the largest distances to the center of the
force. The are found by solving the equation

Ueff (rmin,max) = E.

• Tr is the time it takes the object to return to the same distance to the center of the
force.
• Tφ is the time it takes the object to rotate by 2π around the center of the force.
• For general U(r) these two times do not coincide:

Tr 6= Tr.

It means that after rotating by 2π the object does not return back to the same
distance! The orbit is bounded, but not closed.
• In the Newtonian gravity we can find the orbit in the closed form

1
r

= 1
c

(1 + ε cos(φ− φ0)), c = J2

GMm2 , E = −1− ε2
2

GmM

c
.

φ0 must be found such, that the point rinit and φinit are on the orbit.
• This orbit is closed!!!!!! For any E < 0 and J !!!!!!
• It means, that for the 1/r potential we have Tr = Tφ for ANY E < 0 and J !!!!!

The last point surely requires an explanation!

19.2. Conserved vector ~A.
The Kepler problem has an interesting additional symmetry. This symmetry ensures that
Tr = Tφ (for any E and J). As usual this symmetry also leads to a new conservation law.
In this case the Laplace-Runge-Lenz vector ~A is conserved. This vector is want we want to
study.

If the gravitational force is

~F = − k
r2~er, k = GMm, U(r) = −k

r
then we define:

~A ≡ ~p× ~J −mk~er,
where ~J = ~r × ~p. This vector can be defined for both gravitational and Coulomb forces:
k > 0 for attraction and k < 0 for repulsion.

An important feature of the “inverse square force” is that this vector is conserved. Let’s
check it. First we notice, that ~̇J = 0, so we need to calculate:

~̇A = ~̇p× ~J −mk~̇er.

We notice, that φ̇ = J
mr2 and hence ~ω = ~J

mr2 . Now using

~̇p = ~F , ~̇er = ~ω × ~er = 1
mr2

~J × ~er
we see

~̇A = ~F × ~J − k

r2
~J × ~er =

(
~F + k

r2~er

)
× ~J = 0

So this vector is indeed conserved.
• Notice, that it is conserved ONLY for ~F = − k

r2~er.
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The question is: Is this conservation of vector ~A an independent conservation law? There
are three components of the vector ~A are there three new conservation laws?
The answer is that not all of them are independent.

• As ~J = ~r × ~p is orthogonal to ~er, we see, that ~J · ~A = 0. So the component of ~A
perpendicular to the plane of the planet rotation is always zero.
• Now let’s calculate the magnitude of this vector

~A · ~A = ~p2 ~J2 − (~p · ~J)2 +m2k2 − 2mk~er · [~p× ~J ] = ~p2 ~J2 +m2k2 − 2mk
r

~J · [~r × ~p]

= 2m
(
~p2

2m −
k

r

)
~J2 +m2k2 = 2mE ~J2 +m2k2.

So we see, that the magnitude of ~A is not an independent conservation law.
• Using the relation between the eccentricity ε with ~J2 and E from the last lecture we
find, that

| ~A| =
√
~A · ~A = εkm

• We are left with only the direction of ~A within the orbit plane. Let’s check this
direction. As the vector is conserved we can calculate it in any point of orbit.
• So let’s consider the perihelion. At perihelion ~pper ⊥ ~rper ⊥ ~J , where the subscript
per means the value at perihelion.
• Simple examination shows that ~pper × ~J = pperJ~eper. Then at the perihelion ~A =

(pperJ −mk)~eper.
• However, vector ~A is a constant of motion, so if it has this magnitude and direction
in one point it will have the same magnitude and direction at all points!
• We computed its magnitude before | ~A| = εkm, so

~A = mkε~eper.

We see, that for Kepler orbits ~A points to the point of the trajectory where the planet
or comet is the closest to the sun.
• So we see, that ~A provides us with only one new independent conserved quantity.
• It also means, that if we know the velocity and the position of a planet or a comet at
any time, we can compute the vector ~A at this moment of time and immediately know
the position of the perihelion. And this position is constant — no precession. (In
particular it tells us what φ0 is in the equation for the orbit 1

r
= 1

c
(1+ ε cos(φ−φ0))).

We can also compute rmin, so we will know close, say, a comet will come to the sun and
where the point of the closest approach will be. We can compute this from just the initial
conditions and without solving any differential equations.
But we can do more!





LECTURE 20
Kepler orbits from ~A. Virial theorem. Panegyric to

Newton.

20.1. Kepler orbits from ~A.
Last section we showed, that for the central force ~F =
− k
r2 êr the vector

~A = ~p× ~J −mkêr,

is conserved.
The existence of an extra conservation law sim-

plifies many calculations. For example we can derive
equation for the trajectories without solving any dif-
ferential equations. Let’s do just that.

Let’s derive the equation for Kepler orbits (trajec-
tories) from our new knowledge of the conservation of the vector ~A. For this we consider
~r · ~A.

~r · ~A = ~r · [~p× ~J ]−mkr = J2 −mkr
On the other hand

~r · ~A = rA cosφ, so rA cosφ = J2 −mkr
Or

1
r

= mk

J2

(
1 + A

mk
cosφ

)
, c = J2

mk
, ε = A

mk
.

20.2. Change of orbits.
Consider a problem to change from an circular orbit Γ1 of a radius R1 to an orbit Γ2 with a
radius R2 > R1.

• For the transition we will use an elliptical orbit γ with rmin = R1 and rmax = R2.
• We need two boosts. One to go from Γ1 to γ, and the second one to go from γ to Γ2.
• The final speed on Γ2 will be less than that on Γ1.
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20.3. Virial theorem
Let’s consider a collection of N particles interacting with each other. Let’s assume that they
undergo some motion with a period T — it also means that we are in the center of mass frame
of reference. Then we can define an averaged quantities as follows: Let’s imagine that we
have a quantity P (~ri, ~̇ri) which depends on the coordinates and the velocities of all particles.
Then we define an average

〈P 〉 = 1
T

∫ T

0
P (~ri, ~̇ri)dt

• If the motion is not periodic, then we define the average a bit differently:

〈P 〉 = lim
T→∞

1
T

∫ T

0
P (~ri, ~̇ri)dt

Now let’s calculate average total kinetic energy K = ∑
i
mi~̇r

2
i

2

〈K〉 = 1
T

∫ T

0

∑
i

mi~̇r
2
i

2 dt =
∑
i

mi

2
1
T

∫ T

0
~̇r2
i dt =

∑
i

mi

2
1
T

∫ T

0
~̇ri · ~̇ridt

Taking the last integral by parts and using the periodicity to cancel the boundary terms we
get

〈K〉 = −1
2
∑
i

1
T

∫ T

0
~ri ·mi~̈ridt = −1

2
∑
i

1
T

∫ T

0
~ri · ~Fidt = −1

2
1
T

∫ T

0

∑
i

~ri · ~Fidt,

where ~Fi is the total force which acts on the particle i.
So we find

2〈K〉 = −
〈∑

i

~ri · ~Fi
〉
.

So far it was all very general. Now lets assume that all the forces are the forces of
Coulomb/Gravitation interaction between the particles.

~Fi =
∑
j,j 6=i

~Fij, ~Fij = −kij
r2
ij

êij, kij = Gmimj

where rij = |~ri − ~rj| and êij is a unit vector pointing from j to i, êij = ~ri−~rj
rij

. We then have
for any moment of time∑

i

~ri · ~Fi =
∑
i 6=j

~ri · ~Fij =
∑
i>j

~ri · ~Fij +
∑
i<j

~ri · ~Fij =
∑
i>j

(~ri − ~rj) · ~Fij = −
∑
i>j

rij
kij
r2
ij

= U,

where U is the total potential energy of the system of the particles at the given moment of
time. So we have

2〈K〉 = −〈U〉
This is called the virial theorem.

As the total energy E is conserved — independent of time — we can write E = 〈K〉+〈U〉.
Using the virial theorem we find that E = −〈K〉, and E = 1

2〈U〉.
• It is important, that the above relation is stated for the AVERAGES only. For
example, in the perihelion of a Kepler orbit we know that 2Kper(1 + ε) = −Uper.
• On the other hand for the circular orbit kinetic and potential energies are constant
in time, so their averages are just their values.
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20.4. Kepler orbits for comparable masses.

If the bodies interact only with one another and no
external force acts on them, then the center of mass
has a constant velocity. We then can attach our frame
of reference to the center of mass and work there. This
way we will only be studying the relative motion of the
bodies.

Let’s now consider two bodies with masses m1 and
m2 interacting by a gravitational force. We will use center of mass system of reference and
place our coordinate origin at the center of mass. If the position of m1 is given by ~r1 and the
position of m2 is given by ~r2, then as the center of mass is in the origin we have

m1~r1 +m2~r2 = 0,
then the vector ~r from the mass m2 to the mass m1 is

~r = ~r1 − ~r2 = m1 +m2

m2
~r1.

Then the equation of motion for the mass m1 is

m1~̈r1 = − k
r2~er,

m1m2

m1 +m2
~̈r = − k

r2~er, µ~̈r = − k
r2~er,

where µ is a “reduced mass”
µ = m1m2

m1 +m2
We then see, that the problem has reduced to a motion of a single body of a “reduced mass”
µ under the same force. This is our standard problem, that we have solved before.

In the case of gravitation we can go further and use k = Gm1m2 = G m1m2
m1+m2

(m1 +m2) =
GµM , where M = m1 +m2 — the total mass. So the equation of motion is

µ~̈r = −GµM
r2 ~er,

Or just a motion of a particle of mass µ in the gravitational field of a fixed (immovable) mass
M .

What one must not forget, though, is that after ~r(t) is found one still need to find
~r1(t) = µ

m1
~r(t) and ~r2(t) = − µ

m2
~r(t) to know the positions and motions of the real bodies.

20.5. How to see F = GMm
r2 from Kepler’s laws.

Here I will show how the Newton’s gravity could be derived from the Kepler’s laws. Kepler
found Kepler’s laws from the observations of the planet’s motion. It is clear that there
should be some attraction between the planets and the sun. How do we find the force of this
attraction if we only know the Kepler’s laws/observations and the Newton’s laws of mechanics.
In other words how could Newton figure out that the force of gravity is F = GMm

r2 ?
The crucial observations made by Kepler were

First Law: All planets move along ellipses with the sun in the focus. Different planet’s ellipses
have different eccentricity and different size.

Second Law: The area swept by the position vector increases linearly with time.
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Third Law: The ratio of the square of the period of orbit T to the cube of the large semi-axis a
of the ellipses is the same for all planets — this ratio does not depend on the mass
of the planet or the eccentricity or the size of the planet’s orbit.

The argument, then is the following:
• As the ratio T 2/a3 does not depend on eccentricity, it must be the same if a planet
had a perfectly circular orbit, as a circle is just a special case of ellipse. The radius
of this orbit r will play the role of the large semi-axis.
• From the second law it follows, that the speed of the planet on such an orbit must
be constant.
• Let’s consider this orbit of radius r. There is a force that acts on the planet F (r)
directed to the sun, and we must have

m
v2

r
= F (r),

where m is the mass of the planet and v is its velocity.
• The period of rotation is

T = 2πr
v
.

• So
T 2

r3 = (2π)2 r
2

v2
1
r3 = (2π)2 m

r2F (r) .

• As this ratio must not depend neither on mass m nor on the radius r, we then must
have

F (r) ∼ m

r2

• If the sun attracts the planet with such a force, then the planet must attract the sun
with the same force. But then, according to the above formula the force must be
proportional to the mass of the sun. So we have

F (r) = G
Mm

r2 ,

where G is just some constant.
This is not the complete proof. We need to take the force we found, compute the arbitrary
orbits, and show, that they are ellipses — just as Kepler observed.



LECTURE 21
Functions and Functionals.

21.1. Difference between functions and functionals.
• A function establishes a correspondence/map between elements of one set with ele-
ments of another. Usually for a number x it gives back a (single) number y according
to some rule: y = f(x), where f denotes this rule. So a function is a rule according
to which if I give it a number it returns back a number. For example the function
f(x) = x2 — it is a rule, according to which if I have a number x, I need to square it
and return the result back. Two different x′ may return back the same number. For
the previous example the numbers x and −x will return the same value of f(x).

f : number −→ number.
A function of many variables is a rule by which it takes a few numbers and returns
one number.
• A functional establishes a correspondence/map between functions and numbers. Nor-
mally one has to restrict the space of functions. So a functional is a rule which one
applies to a function from established space to receive back a number. Or if you
give a function to a functional it returns back a number. In order to define a func-
tional we must define the space of functions it can act on and a rule by which it
returns/computes a number if we give it a function from that space.

F : function −→ number.
A functional can take more than one function as an argument.
• An operator takes a function from a defined space and returns back a function (from
the same space).

Ô : function −→ function.
We will not be dealing with operators.

21.2. Examples of functionals.
• The rule is the following. For a function f(x) from the space of functions smooth
on the interval [a, b] the functional F returns a value of the function f(x) at a point
x0 ∈ (a, b).

F [f(x)] = f(x0).
77
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This functional plays a very important role in physics. It is typically written as

F [f(x)] =
∫ b

a
δ(x− x0)f(x)dx = f(x0), x0 ∈ (a, b).

The function δ(x) is called Dirac δ-function. The above expression is the definition
of the δ-function.
• Area under the graph: for a (integrable) functions on interval [a, b] we can define a
functional

A[f(x)] =
∫ b

a
f(x)dx.

That means, that if you have a function f(x) which belongs to our space (it is
integrable on the interval [a, b]) we can construct the number — the area under the
graph. This is the rule which defines our functional.
• Length of a path.

– Our space is the space of smooth functions on the interval [a, b].
– For any graph y(x) we can compute its length

L[y(x)] =
∫ b

a

√√√√1 +
(
dy

dx

)2

dx.

– Let’s now take a path x(t), y(t), where t ∈ [a, b] is a parameter. Both x(t), y(t)
are smooth. Then the length of this path is

L[x(t), y(t)] =
∫ b

a

√√√√(dx
dt

)2

+
(
dy

dt

)2

dt.

It is important to specify the space of functions.



LECTURE 22
More on functionals.

22.1. Examples of functionals. Continued.
• Length of a path. Invariance under reparametrization.

– In the last lecture we considered a path x(t), y(t), where t ∈ [a, b] is a parameter.
Both x(t), y(t) are smooth. Then the length of this path is

L[x(t), y(t)] =
∫ b

a

√√√√(dx
dt

)2

+
(
dy

dt

)2

dt.

– Let’s now change this parameter. Namely we take t to be a function of another
parameter τ : t(τ). The very same graph is given by x(τ) = x(t(τ)) and y(τ) =
y(t(τ)). Then the length is

L[x(τ), y(τ)] =
∫ bτ

aτ

√√√√(dx
dτ

)2

+
(
dy

dτ

)2

dτ,

where t(aτ ) = a, t(bτ ) = b. Using the chain rule we get dx
dτ

= dx
dt

dt
dτ

and the same
for dx

dτ
, as well as dτ = dτ

dt
dt we will get exactly the same expression as before.

So the length – the functional – is invariant under reparametrization.
– In N dimensional space a curve is given by smooth functions xi(t), i = 1 . . . N .
The (Euclidean) length of this curve is given by

L[xi(t)] =
∫ b

a

√
dxi
dt

dxi
dt
dt.

It is a functional on N functions.
• Energy of a horizontal string in the gravitational field.

– Consider a rope linear density ρ and length L. We attach it to two nails distance
l < L apart which are on the same height. What is the potential energy of the
rope which has a shape given by a function y(x)? (y-vertical, x-horizontal)
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– Consider a small piece of the rope. It has a mass ρ
√

(dx)2 + (dy)2. The potential
energy of this piece is ρgy

√
(dx)2 + (dy)2 . So the total potential energy is

U [y(x)] = ρg
∫ l

0
y(x)

√
1 + (y′)2dx.

– It is a functional on a space of smooth functions y(x) in the interval [0, l] which
satisfy the constraint

L = L[y(x)]
• Value at a point as functional. The functional which for any function returns the
value of the function at a given point.
• Functions of many variables. Area of a surface. Invariance under reparametrization.

It is important to specify the space of functions.

22.2. General form of the functionals.
• We need to establish a rule which will allow to compute a number for an arbitrary
function y(x) from the given space.
• General form of a functional

∫ x2
x1
L(x, y, y′, y′′, . . . )dx.

• The integration boundaries x1 and x2 as well as the function L are parts of the
DEFINITION of the functional. They must be given in order for te functional to be
defined.
• Important: In the function L the y, y′, y′′ and so on are just independent variables.
• It means that we consider a function L(x, z1, z2, z3, . . . ) of normal variables x, z1, z2,
z3, . . . and for any function y(x) at some point x we calculate y(x), y′(x), y′′(x), . . .
and plug x and these values instead of z1, z2, z3, . . . in L(x, z1, z2, z3, . . . ).
• We do that for all values of x in the interval [x1, x2], and then do the integration.

22.3. Discretization. Fanctionals as functions.
Let’s consider a functional A[f(x)] acting on the functions from some well defined space, let’s
say on smooth functions on the interval [a, b]. We can do the following trick.

• Consider the variable x to be discretized: instead of thinking of x as a continuous
variable we will select N points xi in the interval [a, b]. Lat’s also take x1 = a,
xN = b.
• Eventually we will need to take a limit N →∞. This limit should be taken in such
a way, that max(∆xi)→ 0.
• A function f(x) is then represented by its values fi at xi: fi = f(xi).
• Then the functional A[f(x)] can be thought as a function of the values fi: A[f(x)] =
A(f1, . . . , fN).
• We then can deal with the functional as a with the function of many variables.
• At the end we must take the limit N →∞ as described above, and make sure, that
such limit does exist.

In many non-trivial cases this procedure allows one to make sense out of the calculations.
If you are to compute the value of a functional numerically, then this procedure is exactly

what you have to do.



LECTURE 23
Euler-Lagrange equation

23.1. A word on notations.
We will consider the functionals of the form

A[y(x)] =
∫ xB

xA
L(x, y(x), y′(x))dx.

• One MUST always specify the space of functions the functional is defined on.
• The function L under the integral is whatever is multiplied by dx in the integral.
• Function L is a FUNCTION.
• When we look at it as a function, x, y(x), and y′(x) are simply its variables.
• As for any (smooth enough) function we can differentiate it.
• We can take the partial derivatives of the function L with respect to its arguments.
For example

∂L

∂y(x) .

• This expression simply means that you need to take the function L(x, z1, z2), dif-
ferentiate it with respect to the second argument z1 and AFTER the differentiation
substitute z1 = y(x), z2 = y′(x)

∂L

∂y(x) ≡
∂L(x, z1, z2)

∂z1

∣∣∣∣∣
z1=y(x),z2=y′(x)

.

• Analogously
∂L

∂y′(x) ≡
∂L(x, z1, z2)

∂z2

∣∣∣∣∣
z1=y(x),z2=y′(x)

.

• IMPORTANT: The substitution z1 = y(x), z2 = y′(x) is done AFTER the partial
derivative is taken.
• To shorten the notations these derivatives are written as

∂L

∂y
,

∂L

∂y′
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23.2. Minimization problem
What kind of problems can we state with the functionals?

One of the most important problem (but not the only one) is stated as following: given
a functional A[f(x)] (remember, that the space the functional works on is a part of its
definition) which function (from the defined space) will give the smallest (or the largest)
value of the functional? How do we find this function?

For an arbitrary functional such function may not exist. Moreover, generally if you change
the space you will find a different answer. In many cases, if you change the space the question
will not have an answer.

Notice, that this is exactly the same situation as with functions. A function may or may
not have minimum or maximum on a given interval. This statement depends on the interval.
For example a function 1/x has no maximum or minimum in the interval [−1, 1], but it has a
minimum and a maximum in the interval [1, 2]. The position of the maximum and minimum
depends on the interval boundaries.

In the following examples notice the importance of defining the space of functions.
• Minimal distance between two points.
• Minimal time of travel. Ferma Principe.
• Minimal potential energy of a string.
• etc.

23.3. Minimum of a function.
Before we derive the equation for the function which minimizes a functional. Let’s remember
how it is done for functions.

The questions is: if we have a function f(x) how do we find the position x0 of its minimum?
There are different ways to think about it. I want to emphasize the following line of

arguments:
• Let’s assume, that we know the position of the minimum x0.
• Let’s consider x which is very close to x0.
• We know that if x is close enough to x0 the value of the function at x0 can be
represented as a series (δx ≡ x− x0)

f(x) = f(x0) + a1δx+ a2(δx)2 + . . .

where the coefficients a1, a2, etc. are the coefficients of the Taylor expansion. They
are some fixed numbers!
• In this series for δx small enough the term a1δx is dominant. And it’s dominance is
the larger then smaller δx is.
• So for very small δx we can write

δf = f(x)− f(x0) ≈ a1δx.

• As f(x0) is the minimum, for small enough δx we must have δf > 0. This must be
true for both positive and negative δx!
• The only way to have ensure this inequality is to have

a1 = 0.
• Then the Taylor expansion starts with the term a2(δx)2 which is positive if a2 > 0
for any δx.
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• According to Taylor expansion a1 = ∂f
∂x

∣∣∣
x=x0

. So to find the minimum we need to
solve the equation

∂f

∂x

∣∣∣∣∣
x=x0

= 0

Notice, that the condition which leads to the equation above is that the change of the function
in the first order in δx is zero!

Notice the whole strategy to find the position of the minimum/extremum for a function
f(x):

• We first assume, that we know the position of the minimum x0.
• We find how the function f(x) changes, when we shift x by small δx from x0.
• We compute the change δf = f(x0 + δx)− f(x) in LINEAR order of δx.
• We DEMAND, that x0 be such, that this change δf vanishes (at LINEAR order in
δx).
• As the result we obtain an algebraic equation for x0.

23.4. The Euler-Lagrange equations
• The functionalA[y(x)] =

∫ x2
x1
L(y(x), y′(x), x)dx with the boundary conditions y(x1) =

y1 and y(x2) = y2.
• The problem is to find a function y(x) which is the stationary “point” of the functional
A[y(x)].
• The stationary “point” (it is a function, it is a “point” in the space of functions) of
a functional A[y(x)] =

∫ x2
x1
L(x, y(x), y′(x))dx for the functions satisfying y(x1) = y1,

y(x2) = y2 is given by the solution of Euler-Lagrange equation.
• Euler-Lagrange equation is the second order differential equation with boundary
conditions y(x1) = y1, y(x2) = y2.
• Derivation of the Euler-Lagrange equation.

– Let’s assume, that we found the function y0(x) which gives as a minimum of the
functional A[y(x)] =

∫ x2
x1
L(x, y(x), y′(x))dx for the functions satisfying y(x1) =

y1, y(x2) = y2.
– Lets shift this function a little and consider the function y(x) = y0(x) + δy(x),
where δy(x) is small/infinitesimal.

– The new function y(x) must be from the same space, so me must have
(23.1) δy(x1) = 0, δy(x2) = 0.

– The value of our functional on the new function is

A[y0(x) + δy(x)] =
∫ x2

x1
L(x, y0(x) + δy(x), y′0(x) + δy′(x))dx

– Let’s compute A[y0(x) + δy(x)] up to the linear order in δy(x):

A[y0(x) + δy(x)] ≈
∫ x2

x1

L(x, y0(x), y′0(x)) + ∂L

∂y

∣∣∣∣∣
y=y0(x)

δy + ∂L

∂y′

∣∣∣∣∣
y′=y′0(x)

δy′

 dx
Here I treated L(x, y, y′) as just a function of its INDEPENDENT variables x,
y, and y′, differentiated it with respect to these variables and then plugged y0
instead of y and y′0 instead of y′.
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– To shorten notations I will use ∂L
∂y0

to mean ∂L
∂y

∣∣∣
y=y0(x)

, and the same for the
primed term.

– Notice, that after this substitution y = y0(x) the functions ∂L
∂y0

and ∂L
∂y′0

are the
functions of x only!

– The first term under the integral is what is in A[y0(x)] — the value of the
functional at the minimum.

A[y0(x) + δy(x)] ≈ A[y0(x)] +
∫ x2

x1

[
∂L

∂y0
δy + ∂L

∂y′0
δy′
]
dx

– Let’s call δA = A[y0(x)+δy(x)]−A[y0(x)]. It is called variation of the functional.

δA ≈
∫ x2

x1

∂L

∂y0
δy(x)dx+

∫ x2

x1

∂L

∂y′0

dδy(x)
dx

dx

– Notice, that in the last term in dδy(x)
dx

it is a full derivative over x. The function
∂L
∂y′0

is a function of x only, as we already plugged y0(x) instead of y and y′0(x)
instead of y′.

– I will use the partial integration on that term

δA ≈
∫ x2

x1

∂L

∂y0
δy(x)dx+ δy(x) ∂L

∂y′0

∣∣∣∣∣
x2

x1

−
∫ x2

x1
δy(x) d

dx

∂L

∂y′0
dx.

Notice that in this step d
dx

∂L
∂y′

assumes full differentiation over x.
– Now we use the boundary conditions (23.1) and see that

δy(x) ∂L
∂y′0

∣∣∣∣∣
x2

x1

= 0.

– So we have

δA ≈
∫ x2

x1
δy(x)

[
∂L

∂y0
− d

dx

∂L

∂y′0

]
dx.

– This equation tells us how the value of the functional A[y(x)] changes, when we
change the function from the minimum y0(x) by an ARBITRARY infinitesimal
function δy (subject, of course to (23.1)).

– As the function δy(x) is arbitrary, the value of the integral
∫ x2
x1
δy(x)

[
∂L
∂y0
− d

dx
∂L
∂y′0

]
dx

can be either positive or negative.
– But the function y0(x) is the minimum! If we shift from the minimum we can
only go up, so the value δA must always be positive! (or non-negative in the
linear order – it will become positive in the quadratic order)

– The only way to ensure that δA is non-negative for ARBITRARY δy(x) is to
demand, that

∂L

∂y0
− d

dx

∂L

∂y′0
= 0.

The statement then is that the function y0(x) must be such as to satisfy this
equation.



LECTURE 23. EULER-LAGRANGE EQUATION 85
• The Euler-Lagrange equation reads

d

dx

∂L

∂y′
= ∂L

∂y
, y(x1) = y1, y(x2) = y2

This is the second order differential equation with boundary conditions y(x1) = y1,
y(x2) = y2.





LECTURE 24
Euler-Lagrange equation continued.

24.1. What to do.
If you have a functional

A[f(ξ)] =
∫ ξB

ξA
L(ξ, f(ξ), f ′(ξ))dξ.

With the space of functions defined as smooth functions with

f(ξA) = fA, f(ξB) = fB.

(or any other way.) You want to find such a function f(ξ) that minimizes (or maximizes)
the functional A.

Here is what you do.
• You take the function L(ξ, f, ξ′) and differentiate it with respect to the f and f ′

treating f and f ′ as simply the names of INDEPENDENT variables. You get
∂L

∂f
,

∂L

∂f ′
.

• AFTER that you treat both f and f ′ as (unknown) functions of ξ: f(ξ) and f ′(ξ) ≡
df(ξ)
dξ

, and take the derivative
d

dξ

∂L

∂f ′
,

using the chain rule (you will have to do that, as you do not know the function f(ξ)).
• You write the second order differential equation

d

dξ

∂L

∂f ′
= ∂L

∂f
.

• You solve it and find the solution which satisfies the boundary (or other) conditions

f(ξA) = fA, f(ξB) = fB.

This is a mathematical procedure. There is no “meaning” of the functional A or function f ,
or variable ξ. The “meaning” of these objects comes from the physical problem which you
are trying to solve with this machinery.
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24.2. Examples
24.2.1. Shortest path between two points in 2D.

There are two points: point 1 and point 2 in 2D Euclidean space. We want to find a path
between the two points which has the smallest length.

24.2.1.1. Cartesian coordinates.
A path is given by y(x). The element of length of the path dl =

√
(dx)2 + (dy)2 =√

1 + (y′)2dx.

• Shortest path
∫ x2
x1

√
1 + (y′)2dx, y(x1) = y1, and y(x2) = y2.

L(y(x), y′(x), x) =
√

1 + (y′)2,
∂L

∂y
= 0, ∂L

∂y′
= y′√

1 + (y′)2
.

the Euler-Lagrange equation is
d

dx

y′√
1 + (y′)2

= 0

• At this point we treat y and y′ as the functions of x (in this particular problem we
do not have y).

y′′√
1 + (y′)2

− (y′)2y′′

(1 + (y′)2)3/2 = 0

We need to solve this second order differential equation and find the solution which
satisfies the boundary conditions.

y(x1) = y1, y(x2) = y2.

• The easier way to solve this Euler-Lagrange equation:
d

dx

y′√
1 + (y′)2

= 0, y′√
1 + (y′)2

= const., y′(x) = const., y = ax+ b.

The constants a and b should be computed from the boundary conditions y(x1) = y1
and y(x2) = y2.

24.2.1.2. Polar coordinates.
A path is given by r(φ). The displacement vector is d~r = drêr + rdφêφ. The length of this
vector is dl2 = d~r · d~r = (dr)2 + r2(dφ)2. So dl =

√
(dr)2 + r2(dφ)2 =

√
(r′)2 + r2dφ.

• The length of the path r(φ) is

L =
∫ φB

φA

√
(r′)2 + r2dφ, r(φA) = rA, r(φB) = rB.

• The function L is
L =

√
(r′)2 + r2.

• Treating r and r′ as INDEPENDENT variables we compute
∂L

∂r
= r√

(r′)2 + r2
,

∂L

∂r′
= r′√

(r′)2 + r2
.
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Now we write the Euler-Lagrange equation, treating r and r′ as the functions of φ!!!

d

dφ

∂L

∂r′
= ∂L

∂r
.

• We get
r′′√

(r′)2 + r2
− r′(r′r′′ + rr′)

((r′)2 + r2)3/2 = r√
(r′)2 + r2

.

• After simple algebra we get
r′′r2 − 2rr′2 − r3 = 0.

• Making the substitution r(φ) = 1
u(φ) and hence r′ = − u′

u2 , r′′ = −u′′

u2 +2u′
2

u3 we convert
the equation into

u′′ = −u.
• This is an oscillator equation with the solution u = C cos(φ− φ0).
• So the solution r(φ) is

r(φ) = A

cos(φ− φ0) .

The arbitrary constants A and φ0 must be found from the boundary conditions.
• This is the equation of the straight line in the polar coordinates.

24.2.2. Shortest time to fall — Brachistochrone.

• What path the rail should be in order for the car to take the least amount of time
to go from point A to point B under gravity if it starts with zero velocity.
• Lets take the coordinate x to go straight down and y to be horizontal, with the origin
in point A. (I switched the conventional names for the axes because I know that this
problem is easier to solve this way.)
• The boundary conditions: for point A: y(0) = 0; for point B: y(xB) = yB.
• The time of travel is

T =
∫ dl

v
=
∫ xB

0

√
1 + (y′)2
√

2gx dx.

• We have

L(y, y′, x) =

√
1 + (y′)2
√

2gx ,
∂L

∂y
= 0, ∂L

∂y′
= 1√

2gx
y′√

1 + (y′)2
.
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• The Euler-Lagrange equation is

d

dx

 1√
2gx

y′√
1 + (y′)2

 = 0.

• At this point we treat y and y′ as the functions of x (in this particular problem we
do not have y).

−1
2

1
x3/2√2g

y′√
1 + (y′)2

+ 1√
2gx

y′′√
1 + (y′)2

− 1√
2gx

(y′)2y′′

(1 + (y′)2)3/2 = 0

We need to solve this second order differential equation and find the solution which
satisfies the boundary conditions.
• The easier way to solve this Euler-Lagrange equation.

d

dx

 1√
2gx

y′√
1 + (y′)2

 = 0, 1
x

(y′)2

1 + (y′)2 = 1
2a, y′(x) =

√
x

2a− x

• So the path is given by

y(x) =
∫ x

0

√
x̃

2a− x̃dx̃

• The integral is taken by substitution x̃ = a(1 − cos θ). It then becomes a
∫

(1 −
cos θ)dθ = a(θ − sin θ). So the path is given by the parametric equations

x = a(1− cos θ), y = a(θ − sin θ).
The point x = 0, y = 0 is already on the path for θ = 0. The constant a must be
chosen such, that the point xB, yB is on the path. It means, that there is such θA
that

xA = a(1− cos θA)
yA = a(θA − sin θA)

Notice, that these are two equations with two unknowns θA and a. (These equations
are transcendental. The solution does exists but cannot be expressed through any
normal way. It can be found numerically.)

24.3. Reparametrization. For self-study.
The form of the Euler-Lagrange equation does not change under the reparametrization.

Consider a functional and corresponding E-L equation

A =
∫ x2

x1
L(y(x), y′x(x), x)dx, d

dx

∂L

∂y′x
= ∂L

∂y(x)
Let’s consider a new parameter ξ and the function x(ξ) converts one old parameter x to
another ξ.

Using the function x(ξ) we can change the variable in the function y(x)

y(ξ) ≡ y(x(ξ)), y′x = dy

dx
= dy

dξ

dξ

dx
≡ y′ξ

dξ

dx
, dx = dx

dξ
dξ
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Our functional then becomes

A =
∫ x2

x1
L(y(x), y′x(x), x)dx =

∫ ξ2

ξ1
L

(
y(ξ), y′ξ

dξ

dx
, x

)
dx

dξ
dξ,

So that we have the new function (the one between the integral and dξ)

Lξ(y, y′ξ, ξ) = L

(
y(ξ), y′ξ

dξ

dx
, x

)
dx

dξ

This is now a function of y, y′ξ, and ξ, and

A =
∫ ξ2

ξ1
Lξ(y(ξ), y′ξ(ξ), ξ)dξ

(x(ξ1) = x1, xξ2 = x2)
The E-L equation then is

d

dξ

∂Lξ
∂y′ξ

= ∂Lξ
∂y(ξ)

Using
∂Lξ
∂y′ξ

= dx

dξ

∂L

∂y′x

dξ

dx
= ∂L

∂y′x
,

∂Lξ
∂y(ξ) = dx

dξ

∂L

∂y(x)
we see that E-L equation reads

d

dξ

∂L

∂y′x
= dx

dξ

∂L

∂y(x) ,
d

dx

∂L

∂y′x
= ∂L

∂y(x) .

So we return back to the original form of the E-L equation.
What we found is that E-L equations are invariant under the parameter change.





LECTURE 25
Lagrangian mechanics.

25.1. The Euler-Lagrange equations, for many variables.
If we have a functional of two functions y(x) and z(x)

A[y(x), z(x)] =
∫ x2

x1
L(x, y(x), z(x), y′(x), z′(x))dx

then, as we derived the Euler-Lagrange equation working with the functional variations only
in the linear order, we have simply the E-L equation for each of the function

d

dx

∂L

∂y′
= ∂L

∂y

d

dx

∂L

∂z′
= ∂L

∂z

And so on.
• It is VERY important that the functions y(x) and z(x) etc. are independent from
each other. We have to be able to take the variations over them INDEPENDENTLY
in order for the Euler-Lagrange equations to be valid.

25.2. Problems of Newton laws.
• Not invariant when we change the coordinate system:

Cartesian:
{
mẍ = Fx
mÿ = Fy

, Cylindrical:

 m
(
r̈ − rφ̇2

)
= Fr

m
(
rφ̈+ 2ṙφ̇

)
= Fφ

.

• Too complicated, too tedious. Consider two pendulums.
• Difficult to find conservation laws.
• Symmetries are not obvious.
• Cannot be used in non-classical world.

25.3. Newton second law as Euler-Lagrange equations
Second order differential equation.
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25.4. Hamilton’s Principle. Action.
Hamilton’s Principle: For each conservative mechanical system there exists a functional,
called action, which is minimal on the solution of the equation of motion

This functional — Action — has the following form:

A[{qi(t)}] =
∫ tf

ti
L(t, {qi(t)}, {q̇i(t)})dt.

Let’s see what it means.
• {qi} — a set of numbers which describes the configuration/position of our system.
These numbers are called generalized coordinates.
– A set of numbers which ambiguously describe the configuration of the system.
– These numbers must be independent.
– These numbers must provide the complete description.

• During the motion these generalized coordinates change as functions of time t. I
collectively denoted the full set of these functions as {qi(t)}.
• Correspondingly, there are generalized velocities: q̇i = dqi

dt
for each of the coordinates.

I collectively denote them as {q̇i(t)}.
• ti is initial moment of time, tf is the final moment.
• The function L(t, {qi(t)}, {q̇i(t)}) of time t, generalized coordinates {qi(t)}, and gen-
eralized velocities {q̇i(t)} is called the Lagrangian of the system.
• The integration is done over time t.

The Hamilton’s principle is not constructive. It states that such functional — Action
A[{qi(t)}] — exists. We still need to construct this functional. This means, that for any
system, after we have chosen the coordinates {qi}, we need to be able to construct the
Lagrangian L(t, {qi(t)}, {q̇i(t)}).

25.5. Lagrangian.
Before I show how to construct the Lagrangian, I want to emphasize two important points:

• Lagrangian is not energy. We do not minimize energy. We do not even minimize the
Lagrangian. We minimize action!
• Lagrangian is a function of generalized coordinates {qi} and generalized velocities
{q̇i}. There must be no momenta in Lagrangian.

The Lagrangian is constructed by the following procedure:
• After we have chosen the generalized coordinates {qi} and assuming, that we know
the generalized velocities {q̇i(t)} we compute the kinetic energy of our system: K(t, {qi}, {q̇i})
— it may or may not explicitly depend on time.
• We also compute the potential energy U(t, {qi}) — it also may or may not explicitly
depend on time.
• The Lagrangian then is given by:

L(t, {qi}, {q̇i}) = K(t, {qi}, {q̇i})− U(t, {qi}).
After we constructed the Lagrangian, we can write the equation of motion for each of

generalized coordinates:
d

dt

∂L

∂q̇i
= ∂L

∂qi
.
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25.6. Examples.
25.6.1. Free fall down a vertical line.

• First step: CHOSE THE COORDINATES, and CHECK:
– Are the coordinates complete? Do they completely describe the system? If you
know the coordinates do you know the configuration of your system?

– Are the coordinates independent? Do the any values of the coordinates chosen
independently describe possible configuration of the system?

• We chose our standard y vertical coordinate, to describe the position of the body.
• The kinetic energy is K = mẏ2

2 .
• The potential energy is U = mgy.
• The Lagrangian is

L(y, ẏ) = K − U = mẏ2

2 −mgy.

• The Lagrange equation is
d

dt

∂L

∂ẏ
= ∂L

∂y
.

or
mÿ = −mg.

25.6.2. Motion of a particle in an arbitrary potential U(~r).

• First step: CHOSE THE COORDINATES, and CHECK:
– Are the coordinates complete? Do they completely describe the system? If you
know the coordinates do you know the configuration of your system?

– Are the coordinates independent? Do the any values of the coordinates chosen
independently describe possible configuration of the system?

• We chose our standard Cartesian coordinates: x, y, z.
• The kinetic energy is K = m~̇r2

2 .
• The potential energy is U(~r).
• The Lagrangian is

L = m~̇r2

2 − U(~r) = mẋ2

2 + mẏ2

2 + mż2

2 − U(x, y, z)

• The Lagrange equation for the component x is

mẍ = −∂U
∂x

.

• The same are for the other components, so we can write

m~̈r = −~∇U.

This is Newton’s equation ~F = m~a! So we indeed reproduced the Newtonian dy-
namics!
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25.6.3. A mass on a stationary wedge. No friction.

• First step: CHOSE THE COORDINATES, and CHECK:
– Are the coordinates complete? Do they completely describe the system? If you
know the coordinates do you know the configuration of your system?

– Are the coordinates independent? Do the any values of the coordinates chosen
independently describe possible configuration of the system?

• There is only one coordinate here y.
• The kinetic energy is mẏ2

2 .
• The potential energy is −mgy sinα.
• The Lagrangian is L = mẏ2

2 +mgy sinα.
• The Lagrange equation is

mÿ = mg sinα.
Notice, we did not need any forces to find this!



LECTURE 26
Lagrangian mechanics.

26.1. General strategy.
ONLY IF ALL THE FORCES ARE CONSERVATIVE!!!

• Choose generalized coordinates {qi}, i = 1 . . . N .
• Generalized coordinates:

– A set of numbers which ambiguously describe the configuration of the system.
– These numbers must be independent.
– These numbers must provide the complete description.

• The number of generalized coordinates N is called the number of degrees of freedom.
• Write the total kinetic energy K of the system in terms of the generalized coordinates
and their time derivatives: {qi} and {q̇i}.
• Write the total potential energy U in terms of the generalized coordinates {qi}.
• Both kinetic and potential energy may or may not depend on time explicitly.
• Define the Lagrangian L = K(t, {q̇i}, {qi})− U(t, {qi}).
• Write down the Lagrange equations for all/every generalized coordinates

d

dt

∂L

∂q̇i
= ∂L

∂qi
.

• Generally, these are coupled non-linear second order differential equations for the
functions qi(t).
• The number of equations equals to the number of the coordinates qi, the number of
degrees of freedom N .
• As all equations are of the second order the general solution of the system of the
equations will depend on 2N arbitrary constants.
• Set up the initial conditions for all generalized coordinates {qi} and generalized
velocities {q̇i}. So each degree of freedom requires 2 initial conditions. The total
number of initial conditions is 2N .
• Solve the equations. Use THE INITIAL CONDITIONS to fix the arbitrary constants
in the general solution!
• As the number of initial conditions 2N equals to the number of unknown constants

2N , the equations for the constants will have a solution (but the solution is not
necessarily unique.)
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26.2. Examples.
26.2.1. A mass on a moving wedge. No friction.

• First step: CHOSE THE COORDINATES, and CHECK:
– Are the coordinates complete? Do they completely describe the system? If you
know the coordinates do you know the configuration of your system?

– Are the coordinates independent? Do the any values of the coordinates chosen
independently describe possible configuration of the system?

• The coordinates are x and y – see figure.
• The kinetic energy of the wedge is Mẋ2

2 .
• Let’s compute the kinetic energy of the mass m. Its horizontal position is x+y cosα,
it’s vertical position is−y sinα, so its horizontal velocity component vhor = ẋ+ẏ cosα,
its vertical velocity component is vvert = −ẏ sinα. So its velocity squared is given
v2 = v2

hor + v2
vert = ẋ2 + ẏ2 + 2ẋẏ cosα.

• So the total kinetic energy is

K = M

2 ẋ2 + m

2
(
ẋ2 + ẏ2 + 2ẋẏ cosα

)
.

• Total potential energy is −mgy sinα.
• The Lagrangian is

L = M +m

2 ẋ2 + m

2 ẏ
2 +mẋẏ cosα +mgy sinα.

• There are two Lagrange equations, for x and y. In order to derive them we compute
– For x coordinate

∂L

∂x
= 0, ∂L

∂ẋ
= Mẋ+mẏ cosα

and
d

dt

∂L

∂ẋ
= Mẍ+mÿ cosα.

So the Lagrangian equation for y coordinate is
∂L

∂ẋ
= Mẍ+mÿ cosα = 0.

– For y coordinate
∂L

∂y
= mg sinα, ∂L

∂ẏ
= mẏ +mẋ cosα
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and

d

dt

∂L

∂ẏ
= mÿ +mẍ cosα.

So the Lagrangian equation for y coordinate is
mÿ +mẍ cosα = mg sinα.

• The two second order differential equation together read
(M +m)ẍ+mÿ cosα = 0
mÿ +mẍ cosα = mg sinα

They must be solved together and the initial conditions must be used to fix the
arbitrary constants in the general solution.

26.2.2. A pendulum.

• The coordinate is φ — the angle the pendulum makes with the vertical line.
• The potential energy: U(φ) = mgl(1− cosφ).
• The kinetic energy is the rotational kinetic energy K = Iω2

2 , where I = ml2 — the
moment of inertia, and ω = φ̇ — angular velocity.
• The Lagrangian is

L = K − U = ml2φ̇2

2 −mgl(1− cosφ).

• The Lagrange equation is
d

dt

∂L

∂φ̇
= ∂L

∂φ
,

∂L

∂φ̇
= Iφ̇,

∂L

∂φ
= −mgl sinφ

φ̈ = −g
l

sinφ.

26.2.3. A pendulum on a cart.

• The coordinate x — the position of the Cart and φ — the angle of the pendulum
are good generalized coordinates. A good test is the following:
– If I know x and φ will I be able to draw the picture, or there will be pieces whose
position I do not know?

– If I know x can I chose φ arbitrarily from withing its domain? If I know φ can
I chose x arbitrarily from withing its domain?

– The first test is for completeness, the second is for independence.
• Next we need to find the kinetic energy K of the whole system through x, ẋ, φ, and
φ̇. And the potential energy U of the whole system as a function of x and φ.
• The kinetic energy of the cart is Mẋ2/2.
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• To find the kinetic energy of the pendulum we need to find the velocity of the ball m
through our generalized coordinates. The x position of the ball is xm = x+l sinφ, the
y position of the ball is ym = l cosφ. Then for the ball we have vx = ẋm = ẋ+φ̇l cosφ,
and vy = ẏm = −φ̇l sinφ. So v2 = v2

x + v2
y = (ẋ+ φ̇l cosφ)2 + φ̇2l2 sin2 φ.

• The total kinetic energy is the sum of the two:

K = Mẋ2

2 + m

2
(
ẋ2 + 2ẋφ̇l cosφ+ l2φ̇2

)
.

• The potential energy is U = −mgym = −mgl cosφ.
• The Lagrangian is

L = K − U = Mẋ2

2 + m

2
(
ẋ2 + 2ẋφ̇l cosφ+ l2φ̇2

)
+mgl cosφ.

• We need to write two equations for x and φ.
– For x we have:

∂L

∂x
= 0, ∂L

∂ẋ
= Mẋ+mẋ+mφ̇l cosφ, d

dt

∂L

∂ẋ
= Mẍ+mẍ+mφ̈l cosφ−mφ̇2l sinφ.

– The first Lagrange equation is
Mẍ+mẍ+mφ̈l cosφ−mφ̇2l sinφ = 0.

– For φ we have
∂L

∂φ
= −mẋφ̇l sinφ−mgl sinφ, ∂L

∂φ̇
= mẋl cosφ+ml2φ̇, d

dt

∂L

∂φ̇
= mẍl cosφ−mẋφ̇l sinφ+l2φ̈.

– The second Lagrange equation is
mẍl cosφ−mẋφ̇l sinφ+ml2φ̈ = −mẋφ̇l sinφ−mgl sinφ

• So the Lagrange equations are
Mẍ+mẍ+mφ̈l cosφ−mφ̇2l sinφ = 0
mẍl cosφ+ml2φ̈ = −mgl sinφ



LECTURE 27
Lagrangian mechanics.

27.1. Examples.
27.1.1. A bead on a vertical rotating hoop.

We have a loop of radius R rotating with a constant
and fixed(!) angular velocity Ω around a diameter in
the vertical direction, see figure. There is a bead of
mass m which can freely — without friction — move
along the loop. There is gravity acting on the bead.
We want to write the equations of motion for the sys-
tem, analyze them, and see if we can learn something
interesting.

“Something interesting” means that we want to
learn some universal aspects. The aspects which do
not depend on the details of the problem and can be
used in developing intuition about more general and
more complicated physical effects.

In particular, this problem illustrates a very gen-
eral idea of spontaneous symmetry breaking. This
idea is used very widely in physics. It is central for
the Landau theory of the second order phase transi-

tions. Such diverse phenomena as Higgs boson, magnetization in magnets, superfluidity,
superconductivity, etc are all in the realm of this theory.

The phenomena mentioned above are quantum and as such requires a different machinery,
but, remarkably this simple problem shows one of the most important aspects of all of them.

27.1.1.1. Equation of motion.
• The loop is rotating with the constant/fixed angular velocity Ω, so its motion is
known and no equation required for it (Notice, that this would be different should
the loop rotate freely, then its motion would be influenced by the motion of the bead
and we would have to write the equations of motion for both the loop and the bead.)
• Ω is a parameter of the problem. We have full control over it.
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• The position of the bead at any moment of time is then fully described by just one
generalized coordinate — the angle θ.
• Lagrangian. We need potential and kinetic energies:

– The potential energy U(θ) = mgR(1− cos θ).
– For the kinetic energy we notice, that the total vector velocity of the bead
has two components vθ — the velocity along the loop, and vΩ — the velocity
perpendicular to the plane of the loop, see figure. We also see that vθ = Rθ̇,
and vΩ = ΩR sin θ. The two components are perpendicular to each other, the
total velocity of the bead is v2 = R2θ̇2 + Ω2R2 sin2 θ. The kinetic energy then is
K(θ, θ̇) = m

2 R
2θ̇2 + m

2 Ω2R2 sin2 θ.
So the Lagrangian is

L = m

2 R
2θ̇2 + m

2 Ω2R2 sin2 θ −mgR(1− cos θ).

• Now we compute
∂L

∂θ̇
= mR2θ̇,

∂L

∂θ
= mΩ2R2 sin θ cos θ −mgR sin θ.

• And the equation of motion is.

Rθ̈ = (Ω2R cos θ − g) sin θ.

27.1.1.2. Analysis of the motion. The motion of the bead depends on the initial conditions.
If one wants to know the full solution one has to set up initial conditions and then solve the
equation of motion. This exact solution is fairly complicated and not very illuminating.

Instead we want to consider the motion around the equilibrium positions of the bead. We
expect this motion to be a harmonic motion and have some universal features.

• At equilibrium the bead does not move, so θ̇ = 0 and θ̈ = 0, so the right hand side
of the equation of motion must be zero.
• There are four equilibrium points θeq the bead can remain stationary on the loop.

sin θeq = 0, or cos θeq = g

Ω2R

• The first equation gives two equilibrium points θeq = 0 or θeq = π.
• Critical Ωc. The second equation cos θeq = g

Ω2R
gives two equilibrium points if and

only if
g

Ω2R
< 1, or Ω > Ωc ≡

√
g/R, cos θeq = Ω2

c

Ω2 .

• Effective potential energy. From the Lagrangian we can read the effective potential
energy:

Ueff (θ) = −m2 Ω2R2 sin2 θ +mgR(1− cos θ).

• One can check,
– that the point θeq = π is always unstable;
– the point θeq = 0 is stable for Ω < Ωc and is unstable for Ω > Ωc;
– the two points cos θeq = Ω2

c

Ω2 are stable when they exist.
• The most interesting regime is Ω ∼ Ωc. In this regime θeq is small. If we are interested
in small oscillations about the equilibrium, then θ is also small.
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• Assuming Ω ∼ Ωc we are interested only in small θ. So

Ueff (θ) ≈
1
2mR

2(Ω2
c − Ω2)θ2 + 3

4!mR
2Ω2

cθ
4

Ueff (θ) ≈ mR2Ωc(Ωc − Ω)θ2 + 3
4!mR

2Ω2
cθ

4,

One should notice, that there are two terms: one of the order of (Ω−Ωc)θ2 and the
other is of the order of θ4. It seems unreasonable to keep only these terms and drop
the rest. However, we will see below, that θ2 ∼ (Ω − Ωc), so in fact both terms are
of the same order (Ω− Ωc)2 and the rest of them are of the higher order.
• Spontaneous symmetry breaking. Plot the function Ueff (θ) for Ω < Ωc, Ω = Ωc, and

Ω > Ωc. Discuss universality.
• Small oscillations around θ = 0, Ω < Ωc

mR2θ̈ = −mR2(Ω2
c − Ω2)θ, ω =

√
Ω2
c − Ω2.

• Small oscillations around θ0, Ω > Ωc.

Ueff (θ) = −m2 Ω2R2 sin2 θ +mgR(1− cos θ),

∂Ueff
∂θ

= −mR(Ω2R cos θ − g) sin θ, ∂2Ueff
∂θ2 = mR2Ω2 sin2 θ −mR cos θ(Ω2R cos θ − g)

∂Ueff
∂θ

∣∣∣∣∣
θ=θ0

= 0, ∂2Ueff
∂θ2

∣∣∣∣∣
θ=θ0

= mR2(Ω2 − Ω2
c)

So the Tylor expansion gives

Ueff (θ ∼ θ0) ≈ const + 1
2mR

2(Ω2 − Ω2
c)(θ − θ0)2

The frequency of small oscillations then is

ω =
√

Ω2 − Ω2
c .

27.1.1.3. Universality.
• The effective potential energy for small θ and |Ω− Ωc|

Ueff (θ) = 1
2a(Ωc − Ω)θ2 + 1

4bθ
4.

• θ0 for the stable equilibrium is given by ∂Ueff/∂θ = 0

θ0 =
{ 0 for Ω < Ωc√

a
b
(Ω− Ωc) for Ω > Ωc

Plot θ0(Ω). Non-analytic behavior at Ωc.
• Response: how θ0 responses to a small change in Ω.

∂θ0

∂Ω =

 0 for Ω < Ωc
1
2

√
a
b

1√
(Ω−Ωc)

for Ω > Ωc

Plot ∂θ0
∂Ω vs Ω. The response diverges at Ωc.





LECTURE 28
Lagrangian mechanics.

28.1. Example.
Here we consider one more example — a double pendulum. The strategy
is same as always

• Choosing the generalized coordinates.
• Write the potential energy.
• Kinetic energy. Normally, most trouble for students.

Here the most natural choice of coordinates are the angles φ1 and φ2. It
is also convenient to use the auxiliary x and y for the intermediate steps.
So that we have

x1 = l1 sinφ1, x2 = l1 sinφ1 + l2 sinφ2

y1 = −l1 cosφ1, y2 = −l1 cosφ1 − l2 cosφ2

• Now we can write the potential energy
U = m1gy1 +m2gy2 = −(m1 +m2)gl1 cosφ1 −m2gl2 cosφ2

• In order to find the kinetic energy we need velocities
v1x = ẋ1 = l1φ̇1 cosφ1, v2x = ẋ2 = l1φ̇1 cosφ1 + l2φ̇2 cosφ2

v1y = ẏ1 = l1φ̇1 sinφ1, v2y = ẏ2 = l1φ̇1 sinφ1 + l2φ̇2 sinφ2

so
v2

1 = v2
1x + v2

1y = l21φ̇
2
1

v2
2 = v2

2x + v2
2y = l21φ̇

2
1 + l22φ̇

2
2 + 2l1l2φ̇1φ̇2 cos(φ1 − φ2)

and the kinetic energy

K = (m1 +m2)l21
2 φ̇2

1 + m2l
2
2

2 φ̇2
2 +m2l1l2φ̇1φ̇2 cos(φ1 − φ2)

• The Lagrangian then is

L = (m1 +m2)l21
2 φ̇2

1 + m2l
2
2

2 φ̇2
2 +m2l1l2φ̇1φ̇2 cos(φ1− φ2) + (m1 +m2)gl1 cosφ1 +m2gl2 cosφ2.
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• Now we write the Lagrangian equations. We first compute the partial derivatives:

∂L
∂φ̇1

= (m1 +m2)l21φ̇1 +m2l1l2φ̇2 cos(φ1 − φ2), ∂L

∂φ1
= −m2l1l2φ̇1φ̇2 sin(φ1 − φ2)− (m1 +m2)gl1 sinφ1

∂L
∂φ̇2

= m2l
2
2φ̇2 +m2l1l2φ̇1 cos(φ1 − φ2), ∂L

∂φ2
= +m2l1l2φ̇1φ̇2 sin(φ1 − φ2)−m2gl2 sinφ2

and then the full derivative for each

(m1 +m2)l21φ̈1 +m2l1l2φ̈2 cos(φ1 − φ2) +m2l1l2φ̇
2
2 sin(φ1 − φ2) = −(m1 +m2)gl1 sinφ1

m2l
2
2φ̈2 +m2l1l2φ̈1 cos(φ1 − φ2)−m2l1l2φ̇

2
1 sin(φ1 − φ2) = −m2gl2 sinφ2

(some terms which appeared originally have canceled each other)
These are the equations of motion. They are second order coupled nonlinear differential
equations. In order to complete them we need to supply also the initial conditions for both
variables.

Such equations are hard to solve or analyze. Typically we are mainly interested in the
small oscillations around the equilibrium position. In this case the equilibrium position is
obvious: φ1,eq = φ2,eq = 0. So we need to linearize our equations around this point.

Linearizaton means that you only keep the linear terms in φ1−φ1,eq and in φ2−φ2,eq and
their derivatives. In our case we then have

(m1 +m2)l21φ̈1 +m2l1l2φ̈2 = −(m1 +m2)gl1φ1

m2l
2
2φ̈2 +m2l1l2φ̈1 = −m2gl2φ2

These are much simpler — they are still coupled, but at least they are linear! They can be
solved by a simple Fourier transform.

28.2. Small Oscillations.
We will study the problem of small oscillation in the next semester. Here is just an overview.

A system will always have some dissipation. In many cases the dissipation can be consid-
ered to be very small. However, no matter how small it is if one waits long enough the system
will find one of its equilibrium positions (there can be several.) Such equilibrium positions
are the minimums of the potential energy. If {qi} are the set of N generalized coordinates
and U({qi}) is the potential energy, then the equilibrium positions {qi,eq} are the solutions
of N algebraic equations

∂U

∂qi

∣∣∣∣∣
{qi=qi,eq}

= 0.

After one solves these equations, then for each solution one must make sure, that this is
indeed the minimum, not the maximum or a saddle point.

In many cases the equilibrium position can be guessed form the problem itself, but not
always!!! One has to be careful.

The Lagrangian equations of motion contain the derivative of the Lagrangian ∂L
∂q̇i

and ∂L
∂qi

.
So in order for the equations of motion to be linear in the displacement of the generalized
coordinates from the equilibrium positions {qi − qi,eq} and generalized velocities one needs
to write the Lagrangian in quadratic order in displacement of generalized coordinates and
generalized velocities.
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For example, for the problem of the double pendulum the equilibrium position is obvious

φ1,eq = φ2,eq = 0. We can write the Lagrangian in the quadratic order in φ1 − φ1,eq = φ1,
φ2 − φ2,eq = φ2 and in φ̇1, φ̇2.

L = (m1 +m2)l21
2 φ̇2

1 + m2l
2
2

2 φ̇2
2 +m2l1l2φ̇1φ̇2 −

1
2(m1 +m2)gl1φ2

1 −
1
2m2gl2φ

2
2.

(I dropped the constant terms from the Lagrangian.) One can see, that our linearized equa-
tions can be obtained from this Lagrangian right away, by the standard procedure.





LECTURE 29
Lagrangian mechanics.

29.1. Non uniqueness of the Lagrangian.
For any problem and any given set of generalized coordinates the Lagrangian is not uniquely
defined. This is similar to the fact that the potential energy is not uniquely defined — one
can always add a constant to it.

In the same way as two potential energy functions which differ only by a constant give
the same equations of motion, two Lagrangians for the same problem must give the same
equations of motion. So two Lagrangians are equivalent if the resulting Lagrangian equations
are the same.

• Let’s take a Lagrangian L(q̇, q, t).
• Let’s take an arbitrary function G(q, t).
• Let’s construct a new Lagrangian L̃(q̇, q, t) = L(q̇, q, t) + q̇ ∂G

∂q
+ ∂G

∂t
.

• The statement is that the two Lagrangians L and L̃ are equivalent. Equivalence
means that the two Lagrangians result in exactly the same equation of motion.

29.1.1. Proof of equivalence.

• The Lagrange equation for the Lagrangian L̃ is

d

dt

∂L̃

∂q̇
= ∂L̃

∂q
.

Let’s use our definition of L̃ and see how it works
∂L̃

∂q̇
= ∂L

∂q̇
+ ∂G

∂q
,

∂L̃

∂q
= ∂L

∂q
+ q̇

∂2G

∂2q
+ ∂2G

∂t∂q

then
d

dt

∂L̃

∂q̇
= d

dt

∂L

∂q̇
+ q̇

∂2G

∂2q
+ ∂2G

∂q∂t

and we see
d

dt

∂L̃

∂q̇
− ∂L̃

∂q
= d

dt

∂L

∂q̇
− ∂L

∂q
.
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• So we see, that the equation we obtain using L̃ is exactly the same as the equation
we obtain using L.

d

dt

∂L

∂q̇
= ∂L

∂q
.

29.1.2. The reason.

We want to understand why the above transformation of the Lagrangian does not change the
equations of motion.

• The reason for this is the following: the expression I added to the Lagrangian q̇ ∂G
∂q

+ ∂G
∂t

is a full derivative q̇ ∂G
∂q

+ ∂G
∂t

= dG
dt

as can be seen using the chain rule. So L̃ = L+ dG
dt
.

But then the Action changes by

Ã =
∫ tf

ti
L̃dt =

∫ tf

ti
Ldt+

∫ tf

ti

dG

dt
dt =

∫ tf

ti
Ldt+G(q(tf ), tf )−G(q(ti), ti) = A+ const.

So the variation of the Action does not change, and thus the condition for the ex-
tremum — the Euler-Lagrange equation — also does not change.

So one can always add a full time derivative to a Lagrangian.
The last statement is correct only in the classical mechanics. In quantum mechanics the

Action itself has its own meaning (unlike the classical mechanics where we are only interested
in its minimum.) and addition of a constant to the Action is not necessarily harmless.

29.2. Generalized momentum.
• Definition: For a coordinate q the generalized momentum is defined as

p ≡ ∂L

∂q̇

• Examples:
– For a particle in a potential field L = m~̇r2

2 − U(~r) we have

~p = ∂L

∂~̇r
= m~̇r

The generalized momentum is just the usual momentum.
– For a rotation around a fixed axis L = Iφ̇2

2 − U(φ), then

p = ∂L

∂φ̇
= Iφ̇ = J.

The generalized momentum is just an angular momentum.

29.3. Ignorable coordinates. Conservation laws.
If one chooses the coordinates in such a way, that the Lagrangian does not depend on say
one of the coordinates q1 (but it still depends on q̇1, then the corresponding generalized
momentum p1 = ∂L

∂q̇1
is conserved as

d

dt
p1 = d

dt

∂L

∂q̇1
= ∂L

∂q1
= 0
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29.3.1. A pendulum on a cart.

Problem of a freely horizontally moving cart of mass M with hanged pendulum of mass
m and length l.

L = Mẋ2

2 + m

2
(
ẋ2 + 2ẋφ̇l cosφ+ l2φ̇2

)
+mgl cosφ.

According to our definition of generalize momentum we can define two moment pφ and px:

pφ ≡
∂L

∂φ̇
= ml2φ̇+mlẋ cosφ

px ≡
∂L

∂ẋ
= (M +m)ẋ+mφ̇l cosφ.

We see right away, that there is no x (remember x and ẋ are different variables for the
Lagrangian) in the Lagrangian. So x is ignorable variable. It means, that the corresponding
generalized momentum px = ∂L

∂ẋ
is conserved. So we can write one of the equations of motion

as
px = (M +m)ẋ+mφ̇l cosφ = const.

This constant should be obtained from the initial conditions.

29.4. Momentum conservation. Translation invariance
Let’s consider a translationally invariant problem. For example all interactions depend only
on the distance between the particles. The Lagrangian for this problem is L(~r1, . . . ~ri, ~̇r1, . . . ~̇ ir, t).
Then we add a constant vector ε to all coordinate vectors and define

Lε(~r1, . . . ~ri, ~̇r1, . . . ~̇ ir, t,~ε) ≡ L(~r1 + ~ε, . . . ~ri + ~ε, ~̇r1, . . . ~̇ ir, t)
It is clear, that in the translationally invariant system the Lagrangian will not change under
such a transformation. So we find

∂Lε
∂~ε

= 0.

But according to the definition
∂Lε
∂~ε

∣∣∣∣∣
~ε=0

=
∑
i

∂L

∂~ri
.

Hence ∑
i

∂L

∂~ri
= 0.

On the other hand the Lagrange equations tell us that∑
i

∂L

∂~ri
= d

dt

∑
i

∂L

∂~̇ri
= d

dt

∑
i

~pi,
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so
d

dt

∑
i

~pi = 0,
∑
i

~pi = const.

We see, that the total momentum of the system is conserved!

29.5. Conservation laws from symmetry. For self-study.
Here I present a simplified version of Noether’s theorem.

Let’s assume that the Lagrangian is invariant under some continuous symmetry. It means
the following: There is a parameter ε dependent transformation of the coordinates {qi} (for
example a rotation around some axis by the angle ε, or translation of all coordinates by a
constant vector, as was considered before) such that the Lagrangian has the same form in
the new coordinate as in the old ones.

Let’s consider the parameter ε to be infinitesimally small — this way we can keep only
linear in ε terms. The transformation from the old {qi} to the new {q̃i} will have the following
form

q̃i = qi + εfi({q1}),
where fi are some functions that define the transformation. (One can easily see, that these
functions completely define the transformation for any finite ε, by simply constructing the
differential equations ∂qi

∂ε
= fi({q1}).

Our new Lagrangian is given by

Lε({qi}, {q̇i}) ≡ L({qi + εfi({qi})}, {q̇i + εq̇j
∂fi({qi})
∂qj

}).

(The Einstein notations are used.) As by the condition the Lagrangian is symmetric —
independent of ε, we can write

0 = ∂Lε
∂ε

= fi({qi})
∂L

∂qi
+q̇j

∂fi({qi})
∂qj

∂L

∂q̇i
= fi({qi})

d

dt

∂L

∂q̇i
+∂L

∂q̇i

d

dt
fi({qi}) = d

dt

(
fi({qi})

∂L

∂q̇i

)
,

where we used the Lagrangian equations of motion. Thus we conclude, that there is a
conservation law corresponding to our symmetry∑

i

pifi = const.



LECTURE 30
Lagrangian’s equations for magnetic forces.

The equation of motion is
m~̈r = q( ~E + ~̇r × ~B)

The question is what Lagrangian gives such equation of motion?

30.1. Electric and magnetic fields.
In order to answer the question above we need to know a bit more about electric and magnetic
fields. Classically these fields are completely described by the Maxwell equations. There are
four of thes equations and they are written in terms of “physical” fields: the electric field
~E(~r, t) and the magnetic field ~B(~r, t). We will need only two of the Maxwell equations:
magnetic Gauss law and Faraday’s law

∇ · ~B = 0, ∇× ~E = −∂
~B

∂t
.

Notice, that these are the two Maxwell equations which do not have matter — charge or
current densities.

Consider first magnetic Gauss law. Which is the statement that there are no magnetic
charges.

∇ · ~B = 0
This equation is satisfied by the following solution

~B = ∇× ~A,

for any (smooth) vector field ~A(~r, t).
The Faraday’s Law

∇× ~E = −∂
~B

∂t
then gives

~E = −∇φ− ∂ ~A

∂t
,

where φ is the electric potential and is again an arbitrary (smooth) function of ~r and t, φ(~r, t).
So instead solving four Maxwell equations for the fields ~E(~r, t) and ~B(~r, t), we can use

the vector potential ~A(~r, t) and potential φ(~r, t) and then solve the remaining two equations
113
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(with the boundary conditions!!) to obtain ~A(~r, t) and φ(~r, t). After that we can reconstruct
the fields ~E(~r, t) and ~B(~r, t) by

~E = −∇φ− ∂ ~A

∂t
,

~B = ∇× ~A.

• The crucial observation: The vector potential ~A(~r, t) and potential φ(~r, t) are not
uniquely defined.

One can take an arbitrary (smooth) function F (~r, t) and transform the potentials ~A and φ
to ~A′ and φ′ in the following way:

~A′ = ~A+∇F, φ′ = φ− ∂F

∂t
.

This transformation will not change the physical fields ~E(~r, t) and ~B(~r, t), as ∇×A′ = ∇×A
and −∇φ′ − ∂ ~A′

∂t
= −∇φ − ∂ ~A

∂t
. The other two Maxwell equations contain only electric and

magnetic fields (and not the potentials) so they will also not fix this freedom.
Moreover, in any experiment we can only measure electric ~E and magnetic ~B fields. This

means that the potentials — vector potential ~A and scalar potential φ— cannot be measured
by their own.

The transformation from one set of fields ~A and φ to another ~A′ and φ′

φ
~A
−→ φ′ = ~A+∇F

~A′ = φ− ∂F
∂t

which leaves the “physical” fields ~E and ~B invariant is called gauge transformation.
The fields ~A and φ are called gauge fields. The freedom of choice is called gauge

freedom. The fact, that no physical results must depend on the choice of gauge (physical
quantities must be invariant under the gauge transformation) is called gauge symmetry.

Such gauge symmetries are extremely important in physics. A lot of constructions in
modern physics involve some sort of gauge symmetry. The fields ~A and φ are called U(1)
gauge fields. There are many others.

As any continuous symmetry, gauge symmetry leads to conservation laws. In the case of
electromagnetism it leads to the charge conservation law (we will not discuss it any further
in this class).

• Important: If ~B and ~E are zero, the gauge fields do not have to be zero.
For example if ~A and φ are constants, ~B = 0, ~E = 0. Generally, if

~A = ∇F, φ = −∂F
∂t
,

for arbitrary (smooth) function F (~r, t), then ~B = 0 and ~E = 0.

30.2. The Lagrangian.
Now we can write the Lagrangian:

L = m~̇r

2 − q(φ− ~̇r ·
~A)
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I note, that this Lagrangian has a simpler and more transparent form in the notations adopted
in the special and general relativity — four dimensional space-time with Minkovskii metric.

• It is impossible to write the Lagrangian in terms of the physical fields ~B and ~E!
• The expression which appears in the action

∫
Ldt

φdt− d~r · ~A
is a full differential if and only if all “cross” derivatives equal to each other (Lecture
13)

−∇φ− ∂ ~A

∂t
= 0, ∇× ~A = 0.

So if these conditions satisfied, then the term q(φ− ~̇r · ~A) can be thrown out from the
Lagrangian. Notice, that these conditions are exactly the conditions for the physical
fields be zero!

The generalized momenta are

~p = ∂L

∂~̇r
= m~̇r + q ~A

(Notice, that the generalized momentum is not the same as usual momentum. Moreover, it
is not gauge invariant!)

The Lagrange equations are:
d

dt
~p = ∂L

∂~r
Let’s consider the x component

d

dt
px = ∂L

∂x
,

mẍ+ qẋ
∂Ax
∂x

+ qẏ
∂Ax
∂y

+ qż
∂Ax
∂z

+ q
∂Ax
∂t

= −q∂φ
∂x

+ qẋ
∂Ax
∂x

+ qẏ
∂Ay
∂x

+ qż
∂Az
∂x

mẍ = q

(
−∂φ
∂x
− ∂Ax

∂t
+ ẏ

[
∂Ay
∂x
− ∂Ax

∂y

]
− ż

[
∂Ax
∂z
− ∂Az

∂x

])
mẍ = q (Ex + ẏBz − żBy)





LECTURE 31
Energy conservation.

31.1. Energy conservation.
We also have the time translation invariance in many systems. It means that the Lagrangian
does not explicitly depend on time. So we have L(q, q̇), and not L(q, q̇, t). However, the
coordinate q(t) does depend on the time. So let’s see how the Lagrangian on a trajectory
depends on time.

Let me clarify the question. Assume that we have a Lagrangian L(q, q̇). We then write
Lagrangian equation of motion d

dt
∂L
∂q̇

= ∂L
∂q

with some initial conditions q(t = 0) = q0,
q̇(t = 0) = v0. Then we solve this equation an obtained q(t) and hence we also obtained
q̇(t) = dq(t)

dt
. We then take these functions and plug them into the Lagrangian L(q(t), q̇(t))

— this is what it means: the value of the Lagrangian on the trajectory. Now the Lagrangian
becomes a function of time on the trajectory. We want to see how it depends on time.

In our standard definition it means that we are interested in the full time derivative of
the Lagrangian.
d

dt
L(q(t), q̇(t)) = ∂L

∂q
q̇+ ∂L

∂q̇
q̈ = ∂L

∂q
q̇+ d

dt

(
∂L

∂q̇
q̇

)
− q̇ d

dt

∂L

∂q̇
= d

dt

(
∂L

∂q̇
q̇

)
+ q̇

(
∂L

∂q
− d

dt

∂L

∂q̇

)
But as we are looking at the real trajectory — the function q(t) is the solution of the Lagrange
equation. So according to the Lagrange equation the last term is zero, so we have

d

dt

(
∂L

∂q̇
q̇ − L(q, q̇)

)
= 0

or
∂L

∂q̇
q̇ − L(q, q̇) = const = E

Using generalized momentum we can write
pq̇ − L = E, Constant on trajectory.

If we have many variables qi, then
E =

∑
i

piq̇i − L

This is another conserved quantity. This conserved quantity is called energy.
117
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If we perform exactly the same calculation as above, but with the Lagrangian which
explicitly depends on time L(q, q̇, t), then the result will be

dE

dt
= ∂L

∂t
.

• So if you have a Lagrangian, the only thing that you need to check is if it has explicit
dependence on time or not. If there is no explicit dependence on time, then the
energy is conserved!

31.2. Examples:
31.2.1. A particle in a potential field.

• The Lagrangian

L = m~̇r2

2 − U(~r)

• The momenta

px = ∂L

∂ẋ
= mẋ, py = ∂L

∂ẏ
= mẏ, pz = ∂L

∂ż
= mż.

• The Energy

E = ẋpx + ẏpy + żpz − L = m~̇r2

2 + U(~r)

31.2.2. A particle on a circle.

• The Lagrangian

L = mR2

2 φ̇2 − U(φ).

• Generalized momentum
pφ = ∂L

∂φ̇
= mR2φ̇.

• The Energy

E = φ̇pφ − L = mR2

2 φ̇2 + U(φ)

31.2.3. A cart (mass M) with a pendulum (mass m, length l).

• The Lagrangian:

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ).



LECTURE 31. ENERGY CONSERVATION. 119
• The generalized momenta:

px = ∂L

∂ẋ
= (M +m)ẋ+mφ̇l cosφ, pφ = ∂L

∂φ̇
= mẋl cosφ+ml2φ̇.

• The Energy

E = ẋpx + φ̇pφ − L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 +mgl(1− cosφ)

31.2.4. A string with tension and gravity.

• The Functional ∫ L

0
(ρgy + T )

√
1 + (y′)2dx.

• One can think of it as an Action of some mechanical system. Then for this system
we identify the “Lagrangian”

L = (ρgy + T )
√

1 + (y′)2.

We also use the letter x to denote the time in that mechanical system.
• So the “generalized momentum” is

p = ∂L

∂y′
= ρgy + T√

1 + (y′)2
y′.

• And conserved “energy”

E = y′p− L = ρgy + T√
1 + (y′)2

.

This is now a first order differential equation which can be solved much easier, than
the second order Euler-Lagrange equation.
• This conserved quantity has a physical meaning for the initial problem of the rope.
It is the x component of the tension force.





LECTURE 32
Hamiltonian.

In this lecture we will construct a function of generalized momenta and coordinates, which
is called Hamiltonian. In this lecture I will not describe how it is used — this will be done
later. Here we just construct this function and consider a few examples.

32.1. Hamiltonian.
Given a Lagrangian L({qi}, {q̇i}) the energy

E =
∑
i

piq̇i − L, pi = ∂L

∂q̇i

is a number defined on a trajectory! One can say that it is a function of initial conditions.
We can construct a function a function of p and q in the following way: we first solve

the set of equations

pi = ∂L

∂q̇i
with respect to q̇i, we then have these functions

q̇i = q̇i({qj}, {pj})
and define a function H({qi}, {pi})

H({qi}, {pi}) =
∑
i

piq̇i({qj}, {pj})− L({qi}, {q̇i({qj}, {pj})}),

• Notice, that in this construction we have never used the equations of motion! we
have treated q, q̇ and p simply as variables, not as some functions of time.

This function is called a Hamiltonian! The Hamiltonian is a function of coordinates and
momenta! THERE MUST BE NO VELOCITIES IN HAMILTONIAN!

• Hamiltonian is NOT energy. Energy is a number on a trajectory. Hamiltonian is a
function of p and q — it, by itself, knows nothing about trajectories.
• Hamiltonian and energy are related to each other. The value of the Hamiltonian on
a trajectory is energy.

The importance of variables:
• We have three kinds of variables:

generalized coordinates — qi, generalized velocities — q̇i, generalized momenta — pi.
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• A Lagrangian is a function of generalized coordinates and velocities: qi and q̇i.
THERE MUST BE NO MOMENTA IN LAGRANGIAN!
• A Hamiltonian is a function of generalized coordinates and momenta: qi and pi.
THERE MUST BE NO VELOCITIES IN HAMILTONIAN!

Here are the steps to get Hamiltonian from Lagrangian for a given system.
(a) Write down the Lagrangian L({qi}, {q̇i}) – it is a function of generalized coordinates

and velocities qi, q̇i.
(b) Find all generalized momenta

pi = ∂L

∂q̇i
.

(c) Treat the above definitions as equations and solve them for all q̇i, so for each velocity
q̇i you have an expression q̇i = q̇i({qj}, {pj}).

(d) Substitute these function q̇i = q̇i({qj}, {pj}) into the expression∑
i

piq̇i − L({qi}, {q̇i}).

The resulting function H({qi}, {pi}) of generalized coordinates and momenta is called Hamil-
tonian.

32.2. Examples.
32.2.1. A particle in a potential field.

• The Lagrangian

L = m~̇r2

2 − U(~r)
• The momenta

px = ∂L

∂ẋ
= mẋ, py = ∂L

∂ẏ
= mẏ, pz = ∂L

∂ż
= mż.

• The velocity

~̇r = ~p

m
• The Hamiltonian

H(~r, ~p) = ẋpx + ẏpy + żpz − L = ~p2

m
− L = ~p2

2m + U(~r)

32.2.2. A particle on a circle.

• The Lagrangian

L = mR2

2 φ̇2 − U(φ).
• Generalized momentum

pφ = ∂L

∂φ̇
= mR2φ̇.

• The velocity
φ̇ = pφ

mR2
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• The Hamiltonian

H(φ, pφ) = φ̇pφ − L =
p2
φ

2mR2 + U(φ)

32.2.3. A cart (mass M) with a pendulum (mass m, length l).

• The Lagrangian:

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ).

• The generalized momenta px = ∂L
∂ẋ

and pφ = ∂L
∂φ̇
:

px = (M +m)ẋ+mφ̇l cosφ,
pφ = mẋl cosφ+ml2φ̇.

• We treat the above equations as a system of equations for ẋ and φ̇ and solve them.
• The generalized velocities ẋ and φ̇ are then expressed through the generalized coor-
dinates x and φ, and the generalized momenta px and pφ:

ẋ = 1
l

lpx − pφ cosφ
M +m sin2 φ

, φ̇ = 1
ml2

(M +m)pφ −mlpx
M +m sin2 φ

.

NOTICE: There is no velocities in the right hand sides of these equations!
• The Hamiltonian

H = ẋpx + φ̇pφ − L = 1
2ml2

ml2p2
x − 2mlpxpφ cosφ+ (m+M)p2

φ

M +m sin2 φ
+mgl(1− cosφ)

The Hamiltonian is a function of the generalized coordinates x and φ, and the gen-
eralized momenta px and pφ only. There is no velocities ẋ and φ̇ in the Hamiltonian.

32.2.4. Central symmetric potential in 3D.

• We need to write the Lagrangian in spherical coordinates. We know
d~r = ~erdr + ~eθrdθ + ~eφr sin θdφ.

Dividing this by dt we get
~v = ~erṙ + ~eθrθ̇ + ~eφrφ̇ sin θ,

so
v2 = ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ.

The Lagrangian is

L = m

2 ṙ
2 + m

2 r
2θ̇2 + m

2 r
2φ̇2 sin2 θ − U(r)
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• The generalized momenta are

pr = ∂L

∂ṙ
= mṙ, pθ = ∂L

∂θ̇
= mr2θ̇, pφ = ∂L

∂φ̇
= mr2φ̇ sin2 θ.

• The generalized velocities

ṙ = pr
m
, θ̇ = pθ

mr2 , φ̇ = pφ
mr2 sin2 θ

.

• The Hamiltonian

H = ṙpr + θ̇pθ + φ̇pφ − L = p2
r

2m + p2
θ

2mr2 +
p2
φ

2mr2 sin2 θ
+ U(r)



LECTURE 33
Hamiltonian equations.

33.1. Hamiltonian.
Here I just remind the construction we discussed last lecture.

• We start with a Lagrangian L({qi}, {q̇i}).
• We write ALL the generalized momenta

pj = ∂L

∂q̇j
.

for ALL variables.
• We treat these equations as equation for ALL q̇i. We solve these equations and
find the functions q̇j({qi}, {pi}) which express ALL generalized velocities through
generalized coordinates and generalized momenta.
• We construct the Hamiltonian

H({qi}, {pi}) =
∑
j

pj q̇j({qi}, {pi})− L({qi}, {q̇j({qi}, {pi})}).

• The Hamiltonian is a function of generalized coordinates and generalized momenta
only. There MUST be no generalized velocities in the Hamiltonian.
• If Lagrangian explicitly depends on time, then the procedure is exactly the same,
but now time t will enter all the equations as a parameter. The Hamiltonian will
then explicitly depend on time t.

33.2. New notations for partial derivatives.
Here I introduce new notation for the partial derivatives. The idea is to make it explicit what
we keep fixed.

• The notation explicitly keeps the notion of what is kept fixed.
• The definition of momentum then is

p =
(
∂L

∂q̇

)
q

.

The notation means that we differentiate the Lagrangian with respect to the variable
q̇ while keeping the variable q fixed.
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In the case of the Lagrangian this notation is overkill, as the Lagrangian only
depends on q and q̇, so the partial derivative with respect to q̇ automatically as-
sumes, that q is fixed. However, these notations become very useful when we start
changing variables — they provide a device to keep track of what is kept fixed at
every differentiation. As a side note these notations are extremely useful when one
studies thermodynamics.
• The Lagrangian equation of motion using these notations is:

d

dt

(
∂L

∂q̇

)
q

=
(
∂L

∂q

)
q̇

.

• The definition of the generalized momentum is

p ≡
(
∂L

∂q̇

)
q

.

etc.

33.3. Hamiltonian equations.
Now we derive the Hamiltonian equations of motion.

33.3.1. First Hamiltonian equation.

• Let’s differentiate the Hamiltonian H(p, q) with respect to momentum p, while keep-
ing the coordinate q fixed.
• We will use H = pq̇ − L(q, q̇), but we will remember, that q̇ is the function of p and
q, i.e. q̇(p, q).
• So we differentiate the function H(p, q) = pq̇(p, q)− L(q, q̇(p, q)).
• We will also remember, that by definition p =

(
∂L
∂q̇

)
q
.

• So we have:(
∂H

∂p

)
q

= q̇ + p

(
∂q̇

∂p

)
q

−
(
∂L

∂q̇

)
q

(
∂q̇

∂p

)
q

= q̇ + p

(
∂q̇

∂p

)
q

− p
(
∂q̇

∂p

)
q

= q̇

This is the first Hamiltonian equation:

q̇ = ∂H

∂p
.

Here I dropped the explicit notion that in this differentiation q must be kept fixed. I
dropped it, because the Hamiltonian depends only on p and q, so partial derivative
of the Hamiltonian with respect to momentum p automatically assumes, that q is
kept fixed.

33.3.2. Second Hamiltonian equation.

• Now lets differentiate the Hamiltonian with respect to q, while keeping p fixed.
• Again we must remember that q̇(p, q) is the function of p and q.
• So using H(p, q) = pq̇(p, q)− L(q, q̇(p, q)) we have(
∂H

∂q

)
p

= p

(
∂q̇

∂q

)
p

−
(
∂L

∂q

)
q̇

−
(
∂L

∂q̇

)
q

(
∂q̇

∂q

)
p

= −
(
∂L

∂q

)
q̇

+
p− (∂L

∂q̇

)
q

(∂q̇
∂q

)
p

.
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• Using the definition of momentum p =
(
∂L
∂q̇

)
q
, we see, that the last term is zero. So

we have (
∂H

∂q

)
p

= −
(
∂L

∂q

)
q̇

.

• According to the Lagrangian equation of motion
(
∂L
∂q

)
q̇

= d
dt

(
∂L
∂q̇

)
q

= ṗ. The last
equality comes from the definition of momentum. So we have the second Hamiltonian
equation:

∂H

∂q
= −ṗ.

Again, I dropped the explicit notion that in this differentiation p must be kept fixed.
I dropped it, because the Hamiltonian depends only on p and q, so partial derivative
of the Hamiltonian with respect to momentum q automatically assumes, that p is
kept fixed.

33.3.3. Both equations.

The two Hamiltonian equation together are

q̇ = ∂H

∂p
,

ṗ = −∂H
∂q

.

• Notice the minus sign in the second equation! This minus sign is very significant!
Without this minus sign these are NOT Hamiltonian equations!
• Notice, that the equations are “self-contained” there is no notion of the generalized
velocities. Everything is written in terms of the coordinates, momenta and their time
dependence.
• If we have many degrees of freedom, then this pair of equations is written for each
degree of freedom.

33.4. Examples.
33.4.1. A particle in a potential field.

• Lagrangian→Hamiltonian.
– The Lagrangian

L(~̇r, ~r) = m~̇r2

2 − U(~r).
– The momentum

~p = ∂L

∂~̇r
= m~̇r.

– The velocity
~̇r = ~p

m
– The Hamiltonian

H(~p, ~r) = ~p · ~̇r − L = ~p2

2m + U(~r)
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• The equations of motion:
– The Lagrangian equations of motion

m~̈r = −∂U
∂~r

.

– The Hamiltonian equations of motion

~̇r = ∂H

∂~p
= ~p

m
, ~̇p = −∂H

∂~r
= −∂U

∂~r
.

– Taking the time derivative of the first equation we find ~̇p = m~̈r. Using this in
the second equation we find

m~̈r = −∂U
∂~r

.

– We see, that the Hamiltonian and Lagrangian equations give the same ~r(t)!

33.4.2. Energy conservation.

• Energy is the value of the Hamiltonian on the trajectory!!!!
• What it means, is that we take a Hamiltonian, write the Hamilton equations, solve
them for some initial conditions q(t = 0) = q0, p(t = 0) = p0 (and so forth if we have
more degrees of freedom). We then have two functions q(t) and p(t).
• We now substitute these functions into the Hamiltonian H(p, q, t) and obtain a func-
tion of time H(p(t), q(t), t).
• Now lets differentiate this function with respect to time. This is a full derivative now

dH

dt
= ∂H

∂p
ṗ+ ∂H

∂q
q̇ + ∂H

∂t
= −∂H

∂p

∂H

∂q
+ ∂H

∂q

∂H

∂p
+ ∂H

∂t
= ∂H

∂t

where we used the Hamilton equations for the functions p(t) and q(t).
• So we see, that if the Hamiltonian does not explicitly depend on time (in less words

∂H
∂t

= 0), then
dH

dt
= 0.

or the value of the Hamiltonian on a trajectory is constant.
• Notice the importance of the minus sign in the second of the Hamilton equations!

33.4.3. Velocity.

• In many cases the Hamiltonian is the starting point.
• The dependence of the velocity on momentum is then given by the Hamilton equation

q̇ = ∂H

∂p
.

• In particular if we have a normal “kinetic energy” E(p) = p2

2m , then this equations
gives

ẋ = ∂E

∂p
= p/m.

This is the usual p = mv.
• The kinetic energy as a function of momentum E(p) is called dispersion relation.
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• It is the dispersion relation which gives the relation between the velocity and mo-
mentum, by the Hamilton equation.
• There are cases where this is very nontrivial. For example in liquid Helium the
dispersion of “exitations” is similar to the one shown in the picture. One can see,
that at p = p0 the momentum is not zero (it is p0), but the velocity is zero!





LECTURE 34
Hamiltonian equations. Examples

The Hamiltonian and Lagrangian formulations of mechanics are equivalent to each other.
Namely, if we know the Lagrangian we will know the Hamiltonian and if we know the Hamil-
tonian we will know the Lagrangian.

34.1. Lagrangian→Hamiltonian, Hamiltonian→Lagrangian.
34.1.1. L→ H

• We are given a Lagrangian L({qi}, {q̇i}) as a function of coordinates {qi} and veloc-
ities {q̇i}. There are no momenta in the Lagrangian!
• We write the definition of momenta

pi = ∂L

∂q̇i
.

• We treat these equations as equations for all velocities {q̇i} and solve them with
respect to the velocities

q̇j = q̇j({pi}, {qi}).
• We construct the Hamiltonian

H({pi}, {qi}) =
∑
j

pj q̇j({pi′}, {qi′})− L({qj′}, {q̇j′({pi′}, {qi′})}).

The Hamiltonian thus constructed is the function of all coordinates {qi} and all momenta
{pi}. There are must be no velocities in the Hamiltonian!

34.1.2. H → L

• We are given a Hamiltonian H({pi}, {qi}) as a function of all coordinates {qi} and
all momenta {pi}. There are no velocities in the Hamiltonian!
• We write the definition of velocity for each momentum

q̇i = ∂H

∂pi
.

• We treat these equations as equations for all momenta {pi} and solve them with
respect to the momenta

pj = pj({qi}, {q̇i}).
131
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• We construct the Lagrangian
L({qi}, {q̇i}) =

∑
j

q̇jpj({qi′}, {q̇i′})−H({pj′({qi′}, {q̇i′})}, {qj′})

The Lagrangian thus constructed is the function of all coordinates {qi} and all velocities {q̇i}.
There are must be no momenta in the Lagrangian!

34.1.3. Equations of motion.

If we have a Lagrangian and a Hamiltonian which are connected by the procedures described
above, then the Lagrangian and Hamiltonian equations are equivalent — they describe the
same motion!

L({qi}, {q̇i}) ⇐⇒ H({pi}, {qi})
d

dt

∂L

∂q̇i
= ∂L

∂qi
⇐⇒

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

qi(t = 0) = qi0, q̇i(t = 0) = vi0 ⇐⇒ qi(t = 0) = qi0, pi(t = 0) = pi0.

Given equivalent initial conditions these equations will give exactly the same qi(t)!

34.2. Examples.
34.2.1. A particle in a potential field.

• Lagrangian→Hamiltonian.
– The Lagrangian

L(~̇r, ~r) = m~̇r

2 − U(~r).
– The momentum

~p = ∂L

∂~̇r
= m~̇r.

– The velocity
~̇r = ~p

m
– The Hamiltonian

H(~p, ~r) = ~p · ~̇r − L = ~p2

2m + U(~r)

• Hamiltonian→Lagrangian.
– From the Hamiltonian

~̇r = ∂H

∂~p
= ~p

m
.

– The momentum
~p = m~̇r.

– The Lagrangian

L(~̇r, ~r) = ~̇r · ~p−H = m~̇r

2 − U(~r).

• We found the Hamiltonian from the Lagrangian and then from Hamiltonian we found
the same Lagrangian.
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• The equations of motion:

– The Lagrangian equations of motion

m~̈r = −∂U
∂~r

.

– The Hamiltonian equations of motion

~̇r = ∂H

∂~p
= ~p

m
, ~̇p = −∂H

∂~r
= −∂U

∂~r
.

– Taking the time derivative of the first equation we find ~̇p = m~̈r. Using this in
the second equation we find

m~̈r = −∂U
∂~r

.

– We see, that the Hamiltonian and Lagrangian equations give the same ~r(t)!

34.2.2. Rotation around a fixed axis.

• Lagrangian→Hamiltonian.

L(φ̇, φ) = Iφ̇2

2 − U(φ).

– The momentum
pφ = Iφ̇.

– Velocity
φ̇ = pφ

I

– The Hamiltonian

H(pφ, φ) = pφφ̇− L =
p2
φ

2I + U(φ).

• Hamiltonian→Lagrangian.
– The velocity

φ̇ = ∂H

∂pφ
= pφ

I
.

– The momentum
pφ = Iφ̇.

– The Lagrangian

L(φ̇, φ) = pφφ̇−H = Iφ̇2

2 − U(φ)

• The equations of motion
– Lagrangian equation

Iφ̈ = −∂U
∂φ
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– The Hamiltonian equations

φ̇ = ∂H

∂pφ
= pφ

I
, ṗφ = −∂H

∂φ
= −∂U

∂φ

Differentiating the first equation with respect to time and using the result in
the second equation we get

Iφ̈ = −∂U
∂φ

– We see, that the Hamiltonian and Lagrangian equations give the same φ(t)!
An example of the system considered above is a pendulum.

34.2.3. Motion in a central symmetric field.

• Lagrangian→Hamiltonian.
– We need to write the Lagrangian in spherical coordinates. We know

d~r = ~erdr + ~eθrdθ + ~eφr sin θdφ.
Dividing this by dt we get

~v = ~erṙ + ~eθrθ̇ + ~eφrφ̇ sin θ,
so

v2 = ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ.

– The Lagrangian is

L = m

2 ṙ
2 + m

2 r
2θ̇2 + m

2 r
2φ̇2 sin2 θ − U(r)

– The momenta:

pr = ∂L

∂ṙ
= mṙ, pθ = ∂L

∂θ̇
= mr2θ̇, pφ = ∂L

∂φ̇
= mr2φ̇ sin2 θ.

– The velocities
ṙ = pr

m
, θ̇ = pθ

mr2 , φ̇ = pφ
mr2 sin2 θ

.

– The Hamiltonian

H = ṙpr + θ̇pθ + φ̇pφ − L = p2
r

2m + p2
θ

2mr2 +
p2
φ

2mr2 sin2 θ
+ U(r).

• Hamiltonian→Lagrangian.
– The velocities

ṙ = ∂H

∂pr
= pr
m
, θ̇ = ∂H

∂pθ
= pθ
mr2 , φ̇ = ∂H

∂pφ
= pφ
mr2 sin2 θ

.

– The momenta

pr = ∂L

∂ṙ
= mṙ, pθ = ∂L

∂θ̇
= mr2θ̇, pφ = ∂L

∂φ̇
= mr2φ̇ sin2 θ.

– The Lagrangian

L = ṙpr + θ̇pθ + φ̇pφ −H = m

2 ṙ
2 + m

2 r
2θ̇2 + m

2 r
2φ̇2 sin2 θ − U(r)

• The equations of motion
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– The Lagrangian equations of motion

mr̈ = mrθ̇2 +mrφ̇2 sin2 θ − ∂U

∂r

mr2θ̈ + 2mrṙθ̇ = mr2φ̇2 sin θ cos θ
mφ̈r2 sin2 θ +mφ̇rṙ sin2 θ + 2r2φ̇θ̇ sin θ cos θ = 0

– The Hamiltonian equations of motion

ṙ = ∂H
∂pr

= pr
m

ṗr = −∂H
∂r

= p2
θ

mr3 +
p2
φ

mr3 sin2 θ
− ∂U

∂r

θ̇ = ∂H
∂pθ

= pθ
mr2 ṗθ = −∂H

∂θ
=

p2
φ cos θ

mr2 sin3 θ

φ̇ = ∂H
∂pφ

= pφ
mr2 sin2 θ

. ṗφ = −∂H
∂φ

= 0

– You are welcome to check that these equations are equivalent to the Lagrangian
equations.

34.2.4. Relativistic particle.

Consider a Hamiltonian H(p, x) = ε(p) = c
√
p2 +m2

0c
2 in 1D. We do not consider any field

so the Hamiltonian does not depend on x.
• Equations of motion.

ṗ = −∂H
∂x

= 0, ẋ = ∂H

∂p
= cp√

p2 +m2
0c

2

So we see, that the momentum is conserved, but the velocity has a nontrivial depen-
dence on momentum. In particular if p→∞ we have ẋ→ c. Moreover, the velocity
can never exceed c!
• The momentum. From the last equation

p = m0ẋ√
1− ẋ2/c2

.

Notice, if we introduce a “mass” as m = m0√
1−ẋ2/c2

, then we have p = mẋ – the usual
formula.
• If we use this p, substitute it into the Hamiltonian, and use our notation for m, then
we get

E = m0c
2√

1− ẋ2/c2
= mc2.

• Lagrangian.
L(ẋ, x) = ẋp−H = −m0c

√
c2 − ẋ2

• Action. It is very instructive to write the Action for this problem

S = −m0c
∫ √

c2 − ẋ2dt = −m0c
∫ √

(cdt)2 − (dx)2.
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• Geometrical meaning of Action. Notice, that the action above is the length of the

interval in the space-time (ct, x) with the metric
(

1 0
0 −1

)
:

(ds)2 = (cdt, dx)
(

1 0
0 −1

)(
cdt
dx

)
The Action then is

A = −m0c
∫
ds

• One now can easily extend this construction to the full 3 + 1 space by using the
Minkovskii metric 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


• Moreover, one is not restricted to the flat Minkovskii space and can write the Action
for a particle in a curved space-time — the space-time with Einstein’s gravity.



LECTURE 35
Hamiltonian equations. Examples. Phase space.

35.1. Examples.
• General case for the kinetic energy quadratic in velocities

L = 1
2 q̇iMij({qk})q̇j − U({qk}),

where Mij({qk}) – a symmetric q-dependent positive definite matrix.
– The momenta

pi = ∂L

∂q̇i
= Mij({qk})q̇j.

– The velocities
q̇i =

(
M−1({qk})

)
ij
pj.

– The Hamiltonian

H = 1
2pi

(
M−1({qk})

)
ij
pj + U({qk})

– The Hamiltonian equations

q̇i = ∂H

∂pi
=
(
M−1({qk})

)
ij
pj

ṗk = −∂H
∂qk

= −1
2pi

(
∂M−1({qk′})

∂qk

)
ij

pj −
∂U

∂qk

Derivative of a matrix
(
∂M−1({qk′})

∂qk

)
ij
means simply the matrix where each matrix

element is the derivative of the original matrix elements (M−1({qk}))ij.
• A cart (mass M) with a pendulum (mass m, length l).

L = M +m

2 ẋ2 +mφ̇ẋl cosφ+ m

2 l
2φ̇2 −mgl(1− cosφ).

This is a particular case of the example above.
– The coordinates/velocities (

ẋ
φ̇

)
137
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– The Lagrangian then can be written as

L = 1
2
(
ẋ, φ̇

)( M +m ml cosφ
ml cosφ ml2

)(
ẋ
φ̇

)
−mgl(1− cosφ)

– The matrix M̂

M̂ =
(
M +m ml cosφ
ml cosφ ml2

)
– The inverse M−1

M̂−1 = 1
ml2

1
M +m sin2 φ

(
ml2 −ml cosφ

−ml cosφ m+M

)
– The Hamiltonian

H = 1
2ml2

ml2p2
x − 2mlpxpφ cosφ+ (m+M)p2

φ

M +m sin2 φ
+mgl(1− cosφ).

– etc.

35.2. Phase space. Hamiltonian vector field. Phase trajectories.
Hamiltonian equations are the first order differential equations! We double the number of
variables and the number of equations, but each equation is now the first order differential
equations. We still need two initial conditions for each degree of freedom.

• The space of all q and all p is called a phase space of the Hamiltonian system.
• The Hamiltonian is just a function on the phase space.

Let’s consider a one dimensional problem with time independent Hamiltonian. So we have
only one generalized coordinate q. The phase space is then two dimensional: (q, p). For a
given Hamiltonian the equations of motion are

q̇ = ∂H

∂p

ṗ = −∂H
∂q

Let’s assume that a system had a phase space coordinates (qt, pt) at time t. The equations
of motion show that at time t+ dt the system will be at the point

qt+dt = qt + ∂H

∂p
dt

pt+dt = pt −
∂H

∂q
dt

Let’s now define the Hamiltonian vector field by

~H =
(

∂H
∂p

−∂H
∂q

)
.

Then we see, that a point (qt, pt) after time dt shifts to(
qt+dt
pt+dt

)
=
(
qt
pt

)
+ ~Hdt
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So the vector ~H is a vector of velocity in the phase space.

• We can compute the vector ~H for any number of degrees of freedom.
• We can plot the vector field ~H at every point of the phase space.
• Notice, that we do not need to solve any differential equations for that. We just need
to differentiate the Hamiltonian!
• This vector field will show the velocity in the phase space for our system.

A trajectories of the system in the phase space are simply the lines which are tangential to
the Hamiltonian vector field at every point of the line. Different trajectories correspond to
different initial conditions.

This construction is very similar to the electric field and electric field lines.

• Motion in the phase space: we can consider the motion of a system in the phase
space: we start from an initial point (qi, pi) and continue along the Hamiltonian
vector field — along phase space trajectories.
• Trajectories do not intersect (except in isolated singular points). This is the same
as for electric field lines. The phase space trajectories (electric field lines) can have
one tangential vector at each point, except the points where ~H = 0 — the singular
points — all the derivatives of the Hamiltonian are zero.
• On the phase trajectories the Hamiltonian is constant — the energy is conserved!

These simple rules allow one to construct the phase space trajectories for many (especially
in 1D) systems. Here are the couple of examples.

• Harmonic oscillator.
– The Hamiltonian of the Harmonic oscillator is

H = p2

2m + mω2x2

2 .

– On the phase space trajectories the Hamiltonian is constant. The lines in (x, p)
space given by

p2

2m + mω2x2

2 = E

are ellipses with the semiaxes
√

2mE and
√

2E/mω2. (The area of these ellipses
is 2πE/ω = ET , where T is the period.)

– The Hamiltonian vector field is

~H =
(
p/m
−mω2x

)
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• Pendulum.
– When energy is small the pendulum is a harmonic oscillator, so for small energies
the trajectories are ellipses.

– When energy grows the ellipses grow.
– Eventually the ellipse must hit a singular point – this is when the energy of the
pendulum is enough to reach the highest point.

– If we increase the energy further the pendulum starts to rotate instead of oscil-
lating.



LECTURE 36
Liouville’s theorem. Poincaré recurrence theorem.

Area law.
• Student’s evaluation.

Before we discuss the Liouville’s theorem I want to make a simple observation.
• As the Hamiltonian equations are the first order equations, any point of the phase
space can be considered as the initial point of a trajectory.
• For any trajectory, any point of this trajectory can be taken as the initial point for
the rest of the trajectory.
• What it means is that we do not need to know the motion in the phase space in the
past in order to predict the motion in the phase space in the future.
• Compare this to the motion in the real (coordinate) space.

36.1. Liouville’s theorem.
For a system of arbitrary number of degrees of freedom, consider a chunk Ωinit of the phase
space which has a volume Ainit. Let’s take every point of this chunk Ωinit as the initial
condition for the Hamiltonian equations with the Hamiltonian H. After some time t every
initial point of the chunk Ωinit will flow to some “final” point of the phase space. The collection
of all these “final” points will make a chunk Ωt of the phase space. This new chunk will have
the volume At.

Theorem: The phase space volume is conserved under the Hamiltonian flow. In other words
At = Ainit for any t.
Proof: I show the proof for the case of one degree of freedom. But the theorem works for
any number of degrees of freedom. The proof for the arbitrary number of degrees of freedom
is almost identical to the one presented below.

141
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As the trajectories do not intersect, we can consider the Hamiltonian flow as a map of the
phase space on itself: any initial point (qinit, pinit) is mapped to a point (q0, p0) = (q(t), p(t))
after time t, where q(t) and p(t) are the solutions of the Hamiltonian equations with (qinit, pinit)
as initial conditions. At this stage the initial chunk Ωinit became Ωt. Let’s consider what
happens to the chunk Ωt after a small additional time interval dt.

After the small time interval dt:
• The chunk Ωt is mapped to the chunk Ωt+dt.
• The boundary of the chunk Ωt is mapped to the boundary of the chunk Ωt+dt.
• A point (q0, p0) from the chunk Ωt is mapped to a point (q1, p1) in the chunk Ωt+dt.

This map (q0, p0)→ (q1, p1) is given by:

q1 = q0 + ∂H

∂p0
dt, p1 = p0 −

∂H

∂q0
dt

• Notice, that in the linear in dt order, the derivatives on the right hand sides must be
computed at the point (q0, p0).
• So in the linear is dt order, we can consider these equations as the equations for the
change of variables from (q0, p0) to (q1, p1).

Consider a piece of volume at time t: At =
∫

Ωt dq0dp0. After time dt, this volume becomes
At+dt =

∫
Ωt+dt dq1dp1. We want to compute the change of this volume dA = At+dt −At.

dA =
∫

Ωt+dt
dq1dp1 −

∫
Ωt
dq0dp0 =

∫
Ωt

(
∂q1

∂q0

∂p1

∂p0
− ∂q1

∂p0

∂p1

∂q0

)
dq0dp0 −

∫
Ωt
dq0dp0.

Using the formulas for our change of variables we find
∂q1

∂q0
= 1 + ∂2H

∂p0∂q0
dt,

∂p1

∂p0
= 1− ∂2H

∂p0∂q0
dt,

and

∂q1

∂p0
= ∂2H

∂p2
0
dt,

∂p1

∂q0
= −∂

2H

∂q2
0
dt.

• Notice the minus sign in the bottom expression on the left.
We can now compute the Jacobian(

∂q1

∂q0

∂p1

∂p0
− ∂q1

∂p0

∂p1

∂q0

)
= 1−

(
∂2H

∂p0∂q0

∂2H

∂p0∂q0
− ∂2H

∂p2
0

∂2H

∂q2
0

)
(dt)2

and

dA =
∫

Ωt
dq0dp0 − (dt)2

∫
Ωt

(
∂2H

∂p0∂q0

∂2H

∂p0∂q0
− ∂2H

∂p2
0

∂2H

∂q2
0

)
dq0dp0 −

∫
Ωt
dq0dp0

so that dA ∼ (dt)2. Notice, that we do not know the coefficient in front of (dt)2, as previously
we kept only the linear in dt terms. However, we know that the linear in dt terms cancel
each other, so that dA starts with the quadratic in dt term. It means, that dA

dt
∼ dt, so when

we take the limit dt→ 0 we get
dA
dt

= 0 at ANY t!!!!, so A = const.

• This is Liouville’s theorem. It states, that the volume of phase space is unchanged
under the map on itself induced by the equations of motion for ANY Hamiltonian!
• It is also correct for any number of degrees of freedom.
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• Notice the importance of the minus sign in the Hamiltonian equations.

36.2. Poincaré recurrence theorem.
If the available phase space for the system is finite. Let’s starts the motion at some point
of the phase space. Let’s consider an evolution of some finite but small neighborhood of
this point. The volume of the neighborhood is constant, so eventually it will cover all of the
available volume. Then the tube of the trajectories must intersect itself. But it cannot, as
trajectories do not intersect. It means that it must return to the starting neighborhood (or
intersect it at least partially.)

It means that under Hamiltonian dynamics the system will always return arbitrary close
to the initial starting point.

The time it will take for the system to return is another matter.

36.3. Area law.
This law is valid only in 1D. This is unlike Liouville’s theorem which is correct for any
number of degrees of freedom.

Let’s consider a Hamiltonian motion in 1D. We will assume, that the motion is periodic
— in 1D the motion is either periodic, or unbounded. In the phase space picture the periodic
motion means that the phase space trajectory is a closed loop (without self-crossings). We
then can compute the area of the phase space A =

∫
dpdq of the loop inside the phase

space trajectory of a motion with energy E. This area will depend on the energy E on the
trajectory. We thus will have a function A(E).

If we solve the equations of motion we will get the trajectory in the phase space as
functions q(t, E) and p(t, E) — the trajectory depends on the energy E.

If we change the energy by dE the area will change. Consider two trajectories one with
the energy E and the other with the energy E + dE. We want to compute the difference
between the areas for the two trajectories dA.

The vector along the trajectory is (dq, dp) = (q̇, ṗ)dt. The vector from a point of the
trajectory E to the trajectory E + dE is ( ∂q

∂E
dE, ∂p

∂E
dE) = ( ∂q

∂E
, ∂p
∂E

)dE.
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The area of the small shaded parallelogram (see figure) is given by the vector (cross)
product of the two vectors (q̇, ṗ)dt and ( ∂q

∂E
, ∂p
∂E

)dE. The small shaded are is then given by

−dE
(
∂q

∂E
ṗ− ∂p

∂E
q̇

)
dt

.
The change of the area dA is then the sum of all these parallelograms along the trajectory:

dA = −dE
∮ (

ṗ
∂q

∂E
− q̇ ∂p

∂E

)
dt

Using the Hamiltonian equations of motion q̇ = ∂H
∂p

and ṗ = −∂H
∂q

we get

dA = dE
∮ (

∂H

∂q

∂q

∂E
+ ∂H

∂p

∂p

∂E

)
dt.

The Hamiltonian is the function of coordinate q and momentum p. The Hamiltonian in the
last formula is the Hamiltonian on the trajectory. The trajectory depends on the energy E,
so we have H(q(t, E), p(t, E)). This function does not depend on time t, as it is conserved.
So we can look at the last formula above as if it is a chain rule for the derivative dH/dE.
Indeed

dH(q(t, E), p(t, E))
dE

= ∂H

∂q

∂q

∂E
+ ∂H

∂p

∂p

∂E
But the derivative dH(q(t, E), p(t, E))/dE is 1, as the value of the Hamiltonian on a trajectory
is energy H(q(t, E), p(t, E)) = E! So we have.

dA = dE
∮ dH

dE
dt = dE

∮
dt = TdE.

Thus we have our Area Law:
dA
dE

= T (E).
• In particular for oscillator we saw that A = 2πE/ω = ET .



LECTURE 37
Adiabatic invariants.

• This lecture is for self-study.
We want to consider the following problem:
• We have a conservative 1D system with slowly varying parameter.
• The system is described by a Hamiltonian H(p, q;λ), where λ is a parameter, say a
spring constant, etc.
• The system undergoes a periodic motion with some period T which depends on
energy E and the value of the parameter λ.
• We now start to slowly change the parameter λ as a function of time.
• What can we say about the motion?

Before we do anything we need to understand what does it mean to change the parameter
“slowly”. The natural definition is that the change of the parameter ∆λ during one period
T is small in comparison to the value of the parameter itself:

T
dλ

dt
� λ.

Rewriting this as
T � λ/λ̇

we see, that there are two vastly different time scales: T — typical time for the motion; λ/λ̇
— typical time of change of the parameter λ.

What do we expect:
• If the parameter is a function of time the energy is no longer conserved.
• The rate of change of the energy averaged over the period of the motion will be very
slow.
• The averaged rate of change of the energy will be proportional to λ̇. If λ̇ = 0 — the
parameter is constant — then the energy does not change, it is conserved.

So we have rapid oscillations and slow change of the parameter. Let’s compute how the
energy is changing. Energy is the value of the Hamiltonian on a trajectory.

dE

dt
=
(
∂H

∂t

)
p,q

=
(
∂H

∂λ

)
p,q

dλ

dt
.

Where in the RHS in
(
∂H
∂λ

)
p,q

we must substitute the solution of the equation of motion p(t)
and q(t). The p and q are changing rapidly with time — the typical time of change is the
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period T . We want to average the above expression over the period T . As dλ
dt

almost does
not change during the period we can take it out of the averaging

dE

dt
= dλ

dt

(
∂H

∂λ

)
p,q

While λ in ∂H
∂λ

is changing just a little during the period we can do the averaging in ∂H
∂λ

assuming λ to be constant.
• So from now on we can consider the Hamiltonian system with constant λ. Which
also means constant energy E.

The averaging means
∂H

∂λ
= 1
T

∫ T

0

(
∂H(p(t), q(t), λ)

∂λ

)
p,q,E

dt.

According to the Hamiltonian equation (remember λ is fixed)

q̇ =
(
∂H

∂p

)
q,λ,E

, or dt = dq

(∂H/∂p)q,λ,E
.

so we have

T =
∫ T

0
dt =

∮ dq

(∂H/∂p)q,λ,E
,

∫ T

0

∂H

∂λ
dt =

∮ (∂H/∂λ)p,q,E
(∂H/∂p)q,λ,E

dq,

where
∮
means integrating there and back. We thus have:

dE

dt
= dλ

dt

∮ (∂H/∂λ)p,q,E
(∂H/∂p)q,λ,E

dq∮ dq
(∂H/∂p)q,λ

.

In the RHS the integrals must be taken on some particular trajectory. The trajectory
depends on the energy E and on the parameter λ.

• This is an important point. All the integrals in the RHS are taken along a trajectory
at fixed E and fixed λ!
• So we solve the Hamiltonian equations for some fixed E and λ, and find p(t;E, λ) and
q(t;E, λ) — this is a parametric form (t is a parameter) of a phase space trajectory
for given E and λ.
• On this trajectory the momentum p can be considered to be a function of the coor-
dinate q. The phase space trajectory is given by p(q;E, λ).

Also on a trajectory, at fixed λ the energy is conserved and E = H(q, p(q;E, λ), λ) Taking
the derivative of this equation with respect to λ for fixed E and q we find(

∂H

∂λ

)
q,p,E

+
(
∂H

∂p

)
q,λ,E

(
∂p

∂λ

)
q,E

= 0,

or
(∂H/∂λ)p,q,E
(∂H/∂p)q,λ,E

= −
(
∂p

∂λ

)
q,E

.
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Also on a trajectory ∂H
∂p

= ∂E
∂p
. So together we have

dE

dt
= −dλ

dt

∮ ( ∂p
∂λ

)
q,E

dq∮ ( ∂p
∂E

)
q,λ
dq

or ∮ ( ∂p
∂E

)
q,λ

dE

dt
+
(
∂p

∂λ

)
q,E

dλ

dt

 dq = 0.

Again, considering p as p(q;E, λ), where the dependence of p on q comes from the solution
of the Hamiltonian equations at FIXED E and λ we can write (for fixed q) dp(q;E, λ) =(
∂p
∂E

)
q,λ
dE +

(
∂p
∂λ

)
q,E

dλ. (As energy is conserved, there is no distinction between E and E
in this procedure.) The above equation then is

d

dt

∮
p(q;E, λ)dq = 0.

So the quantity
I = 1

2π

∮
pdq

is called adiabatic invariant. This quantity does not change during the adiabatic change of
the parameters.

Let me repeat the story:
• We have a conservative 1D system with.
• The system is described by a Hamiltonian H(p, q;λ), where λ is a parameter, say a
spring constant, etc.
• The system undergoes a periodic motion.
• The Hamiltonian equations of motion for FIXED parameter λ conserve the energy
E.
• From the equation E = H(p, q, λ) we find p(q;E, λ)
• We compute the quantity

I(E, λ) = 1
2π

∮
pdq = 1

2π

∮
p(q;E, λ)dq

Notice, that all this is done at FIXED E and λ — we are solving the equations for
a purely conservative system!
• If we now start to slowly change the parameter λ with time, the energy of the system
will be changing in such a way, that

I(E(t), λ(t)) = const.
will remain constant.

37.1. Examples.
37.1.1. A particle in a box.

• A free 1D particle in a box of length L.
• We want to see how the energy of the particle depends on L if we slowly change L.
Namely, we start with the particle of some particular energy E at some length L.
We then slowly change the length L. How the energy of the particle will change?
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We start at fixed E and L. At fixed E the momentum of the particle is p =
√

2mE. The
adiabatic invariant then is

I = 1
2π

∮ √
2mEdq =

√
2mE
2π

∮
dq =

√
2mE
2π 2L.

So the combination
√
EL will remain constant if we slowly change L. So will remain the

combination EL2.
In particular, lets assume, that we slowly changed L to L + dL. As EL2 = const.,

differentiating this with respect to L we find
dEL2 + 2ELdL = 0,

or
dE = −2E

L
dL.

Notice, that this also can be written as (E = mv2

2 = 1
2pv)

dE = −2p v2LdL = −2p
T
dL.

but 2p/T is the average change of the particle’s momentum during one period, so it is an
average force f which the particle exerts on the wall. Then fdL is work which the system
did while the wall was moving from L to L+ dL. Accordingly, the energy of the particle has
decreased by exactly the work the particle has done.

37.1.2. Oscillator.

The Hamiltonian is
H = p2

2m + mω2

2 x2.

We want to see how the energy changes if we slowly change the frequency ω.
Considering the motion at fixed E and ω we write

p = ±
√

2mE −m2ω2x2

The adiabatic invariant is (xE =
√

2E
mω2 )

I = 1
2π2

∫ xE

−xE

√
2mE −m2ω2x2dx = E

ω
.

So if we slowly change ω the energy will always stay proportional to the frequency
E ∼ ω.



LECTURE 38
Poisson brackets. Change of Variables. Canonical

variables.
• Students’ evaluations.

38.1. Poisson brackets.
Consider a function of time, coordinates and momenta: f(t, {q}, {p}). We want to know
how the value of this function changes with time on the solutions of the equations of motion.
Namely, we have a Hamiltonian H({p}, {q}) and the Hamiltonian equations of motion

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
.

We want to solve them with some initial conditions and find the functions qi(t) and pi(t).
We then plug these functions in the function f and get f(t, {q(t)}, {p(t)}), which is now a
function of time – the value of the function f on the trajectory. We want to see how this
value changes with time.

So we want to compute df
dt
:

df

dt
= ∂f

∂t
+
∑
i

(
∂f

∂qi
q̇i + ∂f

∂pi
ṗi

)
= ∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
= ∂f

∂t
+ {H, f}

where we defined the Poisson brackets for ANY two functions g and f

{g, f} =
∑
i

(
∂g

∂pi

∂f

∂qi
− ∂g

∂qi

∂f

∂pi

)
.

• Notice, that the Poisson brackets are defined for any two functions f and g.
In particular we see, that

{pi, pk} = 0, {qi, qk} = 0, {pi, qk} = δi,k.

According to the definition Poisson brackets are
• Antisymmetric.
• Bilinear.
• For a constant c, {f, c} = 0.
• {f1f2, g} = f1{f2, g}+ f2{f1, g}.
• Jacobi’s identity. (we will talk about it later.)
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38.2. Change of Variables.
We want to answer the following question. What change of variables will keep the Hamilton-
ian equations intact? Namely, we have our original variables {p} and {q} and the original
Hamiltonian H({p}, {q}). The Hamiltonian equations are

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
.

We want to find the new variables {P} and {Q}, such that the form of the Hamiltonian
equations for the new variables is the same

Q̇i = ∂H

∂Pi
, Ṗi = − ∂H

∂Qi

.

Let’s consider an arbitrary transformation of variables: Pi = Pi({p}, {q}), and Qi =
Qi({p}, {q}). We then have

Ṗi = {H,Pi}, Q̇i = {H,Qi}.

or

Ṗi =
∑
k

[
∂H

∂pk

∂Pi
∂qk
− ∂H

∂qk

∂Pi
∂pk

]
.

At this point I want to make the change of variables in the Hamiltonian. For that I in-
vert/solve the equations for the change of variables to get pi = pi({P}, {Q}) and qi =
qi({P}, {Q}) and substitute these functions into the original Hamiltonian H({p}, {q})

H({p({P}, {Q})}, {q({P}, {Q})}) ≡ H({P}, {Q}),

and, of course, the opposite is also true

H({P ({p}, {q})}, {Q({p}, {q})}) ≡ H({p}, {q}),

we then have by the chain rule
∂H

∂pk
=
∑
α

(
∂H

∂Pα

∂Pα
∂pk

+ ∂H

∂Qα

∂Qα

∂pk

)
,

∂H

∂qk
=
∑
α

(
∂H

∂Pα

∂Pα
∂qk

+ ∂H

∂Qα

∂Qα

∂qk

)

Substituting this into our equation for Ṗi we get

Ṗi =
∑
k,α

[(
∂H

∂Pα

∂Pα
∂pk

+ ∂H

∂Qα

∂Qα

∂pk

)
∂Pi
∂qk
−
(
∂H

∂Pα

∂Pα
∂qk

+ ∂H

∂Qα

∂Qα

∂qk

)
∂Pi
∂pk

]

Collecting all terms with ∂H
∂Pα

and ∂H
∂Qα

and using our definition of Poisson brackets we obtain

Ṗi = −
∑
α

[
∂H

∂Pα
{Pi, Pα}+ ∂H

∂Qα

{Pi, Qα}
]
.

Analogously,

Q̇i = −
∑
α

[
∂H

∂Qα

{Qi, Qα}+ ∂H

∂Pα
{Qi, Pα}

]
We see, that the Hamiltonian equations keep their form if

{Pi, Qα} = δi,α, {Pi, Pα} = {Qi, Qα} = 0
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• So in order for the Hamiltonian equation to have the same form in the new variables
the Poisson brackets of the new variables must be the same as the Poisson brackets
of the old variables.

38.3. Canonical variables.
The Poisson brackets

{Pi, Qα} = δi,α, {Pi, Pα} = {Qi, Qα} = 0
are called canonical Poisson brackets.

The variables that have such Poisson brackets are called the canonical variables, they are
canonically conjugated. Transformations that keep the canonical Poisson brackets are called
canonical transformations.

• Non-uniqueness of the Hamiltonian.
• Coordinates and momenta obtained from Lagrangian are always canonically conju-
gated.
• L = pq̇ −H only if p and q are canonical variables.
• Canonical Poisson brackets are encoded in the pq̇ term.





LECTURE 39
Poisson brackets structure. How to compute Poisson

brackets for arbitrary functions.
• Evaluations. Ends 12/8/2022

39.1. Hamiltonian mechanics
• The Poisson brackets are property of the phase space and have nothing to do with
the Hamiltonian.
• The Hamiltonian is just a function on the phase space.
• Given the phase space pi, qi, the Poisson brackets and the Hamiltonian. We can
construct the equations of the Hamiltonian mechanics:

ṗi = {H, pi}, q̇i = {H, qi}.
• In this formulation there is no need to distinguish between the coordinates and
momenta. So we can use ξ1 . . . ξ2N instead of q1 . . . qN and p1 . . . pN , with given
Poisson brackets {ξi, ξj}.
• The equations of motion are then

ξ̇i = {H, ξi}.
• Time evolution of any function f({ξ}, t) is given by the equation

df

dt
= ∂f

∂t
+ {H, f}.

difference between the full and the partial derivatives!

39.2. New formulation of the Hamiltonian mechanics.
Here is the new formulation of mechanics:

• We have a phase space with coordinates ξi, where i = 1 . . . 2N for N degrees of
freedom.
• This phase space is equipped with Poisson brackets: {ξi, ξj}. What it means is that
for any two coordinates ξi and ξj we know a function {ξi, ξj} which depends on two
indexes i and j and of all the coordinates.
• Poisson brackets must satisfy the following axioms

– Antisymmetric.
– Bilinear.
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– For a constant c, {f, c} = 0.
– {f1f2, g} = f1{f2, g}+ f2{f1, g}.
– Jacobi’s identity. (we will talk about it later.)

• Notice, that the axioms are formulated for ANY/arbitrary functions on the phase
space. So they are the property of the phase space itself.
• Any function on the phase space H({ξ}, t) can be a Hamiltonian (which function
you take as a Hamiltonian depends on the problem you are solving.)
• Time evolution of any function f({ξ}, t) is given by the equation

df

dt
= ∂f

∂t
+ {H, f}.

In this formulation the phase space and the Poisson brackets play the major role. They are
independent of a Hamiltonian (the are defined before the Hamiltonian even introduced) If
we know the Hamiltonian we can also construct the Hamiltonian equations of time evolution
of any function.

In particular the time evolution of the Hamiltonian itself is given by
dH

dt
= ∂H

∂t
+ {H,H} = ∂H

∂t

as {H,H} = 0 due to antisymmetry of the Poisson brackets. So if the Hamiltonian does not
explicitly depend on time, then it is conserved on the trajectories.

• In this formulation we separated the properties of the phase space (the Poisson
bracket structure) from the Hamiltonian itself.
• Canonical Poisson brackets is just one example of the possible Poisson bracket struc-
ture. (in some sense, this is analogous to the statement that the Euclidean geometry
is just one example of all possible geometries.)
• The Jacobi identity puts a very strong restriction on all possible Poisson brackets
structure.

39.3. How to compute Poisson brackets for any two functions.
In order to use our new formulation we need a way to compute the Poisson bracket between
any two functions f and g if we know all {ξi, ξj}. In general the Poisson bracket {ξi, ξj} is
the function of all the phase space coordinates. We only require that all the properties listed
in definition hold.

The answer is:
{f, g} = ∂f

∂ξi

∂g

∂ξj
{ξi, ξj}.

(summation over the repeated indexes is implied.) Notice the order of indexes. It is impor-
tant.

Let’s prove this formula.
• We start with the Poisson bracket of {ξj, g}, where g is an arbitrary function on the
phase space (for simplicity we take that g does not depend on time explicitly).
• In order to compute it we consider ξj as our Hamiltonian. This Hamiltonian then
gives the time evolution

dg

dt
= {ξj, g}.
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• On the other hand, by the chain rule

dg

dt
= ∂g

∂ξi

dξi
dt

= ∂g

∂ξi
{ξj, ξi}.

• Comparing the two results we see, that

{ξj, g} = ∂g

∂ξi
{ξj, ξi}

• To compute the Poisson bracket {g, f} we consider the function g as the Hamiltonian,
then

df

dt
= {g, f}.

• On the other hand, by the chain rule
df

dt
= ∂f

∂ξj

dξj
dt

= ∂f

∂ξj
{g, ξj} = − ∂f

∂ξj

∂g

∂ξi
{ξj, ξi}

so that
{f, g} = ∂f

∂ξj

∂g

∂ξi
{ξj, ξi}.

(take notice of the order of indexes, it is important as the Poisson brackets are
antisymmetric.)
• Using this rule we see, that if all the requirements for the Poisson brackets are
satisfied for all {ξi, ξj}, then these requirements are satisfied for any functions f and
g.

There is one more identity the Poisson brackets must satisfy – the Jacobi’s identity.





LECTURE 40
The Jacobi’s identity.

• Evaluations. Ends 12/8/2022
Our new formulation of the Hamiltonian mechanics is:
• We have phase space with coordinates ξi.
• The phase space equipped with the Poisson brackets structure {ξi, ξj}. The Poisson
brackets are functions on the phase space.
• The Poisson brackets must satisfy a set of axioms listed below.
• Any function on the phase space (and time) can be a Hamiltonian. (Which function
you use for a particular problem depends on the problem.)
• If the Hamiltonian H({ξ}, t) is given, then for any function g({ξ}, t) we can write
the equation of time evolution

dg

dt
= ∂g

∂t
+ {H, g}.

• In particular the Hamiltonian equations of motion are

ξ̇i = {H, ξi}.

The axiomatic definition of the Poisson brackets is
• Antisymmetric.
• Bilinear.
• For a constant c, {f, c} = 0.
• For any functions f1, f2, and g the following is true {f1f2, g} = f1{f2, g}+ f2{f1, g}.
• Jacobi’s identity.

If we know the Poisson brackets {ξi, ξj}, we can compute the Poisson brackets of any two
functions f and g:

{f, g} = ∂f

∂ξi

∂g

∂ξj
{ξi, ξj}.

(Einstein notations are used, summation over repeated indexes is implied.)
In this lecture we discuss the last axiom: the Jacobi’s identity.
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40.1. The Jacobi’s identity.
Using the definition of the Poisson brackets in the canonical coordinates it is easy, but lengthy
to prove, that for any three functions f , g, and h:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

As it holds for any three functions this is the property of the phase space and the Poisson
brackets.

This property is called the Jacobi’s identity. It is a part of the axiomatic definition for
Poisson brackets in general.

40.1.1. Proof of the Jacobi identity.

First we need to establish what we want to prove, after all the Jacobi identity is the part
of the axiomatic definition of the Poisson brackets. The statement we want to prove is the
following:

• If the Jacobi identity is satisfied by the Poisson brackets of the phase space coordi-
nates, then it is satisfied for any three arbitrary functions.
• So we want to proof that if for any i, j, k

{ξi, {ξj, ξk}}+ {ξj, {ξk, ξi}}+ {ξk, {ξi, ξj}} = 0

then
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

for any functions f , g, and h.
We will prove this statement in two steps. First we consider the situation when {ξi, ξj} =

const — independent of the phase space coordinates. (This case covers the canonical Poisson
brackets.) Then we consider the general case.

40.1.2. The case of {ξi, ξj} = const.

We have the phase space coordinates ξ1 . . . ξ2N , and {ξi, ξj} = const. This constants will
depend on i and j, but they do not depend on the coordinates {ξ}.

Consider the first term in the Jacobi’s identity {f, {g, h}}. According to our rule of
computing the Poisson brackets we have

{g, h} = ∂g

∂ξj

∂h

∂ξi
{ξj, ξi}.

• Remember, we are using the Einstein notations!
Using the same rule again we have

{f, {g, h}} = ∂f

∂ξp

∂

∂ξl

(
∂g

∂ξi

∂h

∂ξj
{ξi, ξj}

)
{ξp, ξl} = ∂f

∂ξp

∂

∂ξl

(
∂g

∂ξi

∂h

∂ξj

)
{ξi, ξj}{ξp, ξl},

where we used ξ1 . . . ξ2N , and {ξi, ξj} = const to pull {ξi, ξj} from under the differentiation.
Now we take the derivative and find

{f, {g, h}} = ∂f

∂ξp

∂2g

∂ξi∂ξl

∂h

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂f

∂ξp

∂g

∂ξi

∂2h

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}.



LECTURE 40. THE JACOBI’S IDENTITY. 159
Cycle permutations of the functions f , g, and h gives the other two terms

{g, {h, f}} = ∂g

∂ξp

∂2h

∂ξi∂ξl

∂f

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂g

∂ξp

∂h

∂ξi

∂2f

∂ξj∂ξl
{ξi, ξj}{ξp, ξl},

{h, {f, g}} = ∂h

∂ξp

∂2f

∂ξi∂ξl

∂g

∂ξj
{ξi, ξj}{ξp, ξl}+ ∂h

∂ξp

∂f

∂ξi

∂2g

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}

We want to show that the sum of all these terms is zero for arbitrary functions f , g, and
h. Each term has on second derivative of one of the functions. In order for the sum of the
terms to be zero the terms with the same second derivative must cancel each other. Consider
the terms which have the second derivative of the function f , these terms originate from
{g, {h, f}} and {h, {f, g}}. Let’s isolate them and take a closer look at their structure

∂g

∂ξp

∂h

∂ξi

∂2f

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}+ ∂h

∂ξp

∂2f

∂ξi∂ξl

∂g

∂ξj
{ξi, ξj}{ξp, ξl}

• Remember, we are using the Einstein notations!
• The summations of all the indexes is assumed.
• It does not matter which latter we use to label the indexes, as we sum over all their
possible values anyway.
• Then take the first term above an relabel the indexes according to the scheme

p→ j, j → l, l→ i, i→ p.

We get
∂g

∂ξj

∂h

∂ξp

∂2f

∂ξl∂ξi
{ξp, ξl}{ξj, ξi}+ ∂h

∂ξp

∂2f

∂ξi∂ξl

∂g

∂ξj
{ξi, ξj}{ξp, ξl}

We see, that now the only difference between these two terms is that the first one has {ξj, ξi},
while the second has {ξi, ξj}. As the Poisson brackets are antisymmetric the two terms are
the same, but with the opposite sign. So the sum of the two terms is zero.

The other terms are obtained by a simple cyclic permutation of the functions f , g, and
h. So if the second derivative terms of f cancel each other the other terms will also cancel
each other. Then the total sum of all therms is zero, as it should be by Jacobi identity.

So we proved, that in the case {ξi, ξj} = const the Jacobi identity is satisfied.
• Notice, that in this step we did not need the Jacobi identity for the coordinates.
• On the other hand if {ξi, ξj} = const the Jacobi identity for the coordinates are
satisfied automatically, as the inner Poisson brackets are constant.

40.1.3. The case of arbitrary {ξi, ξj}.

This case is different from the previous one only in one point. We cannot pull {ξi, ξj} from
under the differentiation. We then have

{f, {g, h}} = ∂f

∂ξp

∂2g

∂ξi∂ξl

∂h

∂ξj
{ξi, ξj}{ξp, ξl}+

∂f

∂ξp

∂g

∂ξi

∂2h

∂ξj∂ξl
{ξi, ξj}{ξp, ξl}+

∂f

∂ξp

∂g

∂ξi

∂h

∂ξj

∂{ξi, ξj}
∂ξl

{ξp, ξl}

The first two terms are exactly the same as before, so as before they will cancel each other.
We then need to concentrate only on the last term. Let’s write all three of these terms
obtained by cyclic permutation of the functions f , g, and h.

∂f

∂ξp

∂g

∂ξi

∂h

∂ξj

∂{ξi, ξj}
∂ξl

{ξp, ξl}+ ∂g

∂ξp

∂h

∂ξi

∂f

∂ξj

∂{ξi, ξj}
∂ξl

{ξp, ξl}+ ∂h

∂ξp

∂f

∂ξi

∂g

∂ξj

∂{ξi, ξj}
∂ξl

{ξp, ξl}.
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• We relabel the indexes in the last two terms in such a way, that all terms have the
same derivatives.
• It means, that in the second term we relabel

j → p, i→ j, p→ i.

• In the third term we relabel

i→ p, j → i, p→ j

We get

∂f

∂ξp

∂g

∂ξi

∂h

∂ξj

(
∂{ξi, ξj}
∂ξl

{ξp, ξl}+ ∂{ξj, ξp}
∂ξl

{ξi, ξl}+ ∂{ξp, ξi}
∂ξl

{ξj, ξl}
)
.

As the functions f , g, and h are arbitrary in order for the above to be zero the expression in
the brackets must be zero. Let’s then concentrate on the term in the brackets. To start with
we take a hard look at the first term in the brackets

∂{ξi, ξj}
∂ξl

{ξp, ξl}.

Remember, that the Poisson bracket {ξp, F} = ∂F
∂ξl
{ξp, ξl} for ANY function F on the phase

space. So treating {ξi, ξj} as some function on the phase space we get

∂{ξi, ξj}
∂ξl

{ξp, ξl} = {ξp, {ξi, ξj}}.

Applying this trick to every term in the brackets we get

{ξp, {ξi, ξj}}+ {ξi, {ξj, ξp}}+ {ξj, {ξp, ξi}}.

But this is zero by the Jacobi identity for the Poisson brackets!
So we proved, that if the Jacobi identity is satisfied by the Poisson brackets of the phase

space coordinates, then it is satisfied for any three arbitrary functions.

• As it holds for any functions this is the property of the phase space and the Poisson
brackets themselves.



LECTURE 40. THE JACOBI’S IDENTITY. 161
40.2. Commutation of Hamiltonian flows.

For a Hamiltonian H we can introduce the operator ζ̂H of the Hamiltonian flow by the
following definition: for any function g

ζ̂Hg ≡ {H, g}
Using this definition for one of the coordinates (plugging ξi instead of g) we see, that ζ̂Hξi =
{H, ξi} = dξi

dt
. So this Hamiltonian flow induces the Hamiltonian vector field we considered

earlier.
Let’s now consider two Hamiltonians H1 and H2 and compute the commutator of their

flows. Namely, for any function g we have (using Jacobi’s identity)
ζ̂H1 ζ̂H2g − ζ̂H2 ζ̂H1g = {H1, {H2, g}} − {H2, {H1, g}} = {{H1, H2}, g} = ζ̂{H1,H2}g.

As this is true for any function g we have
ζ̂H1 ζ̂H2 − ζ̂H2 ζ̂H1 = ζ̂{H1,H2}.

So the commutator of the Hamiltonian flows is also a Hamiltonian flow.
On the figure
• The red dashed lines show the flow ζ̂H1 , the blue dashed lines show the flow ζ̂H2 .
• The operator ζ̂H2 ζ̂H1 shifts the point A along ABD path.
• The operator ζ̂H1 ζ̂H2 shifts the point A along ACD′ path.
• So the operator ζ̂H1 ζ̂H2 − ζ̂H2 ζ̂H1 shifts point D′ to point D.
• This shift can be described by another Hamiltonian flow ζ̂{H1,H2}.





LECTURE 41
Integrals of motion. Angular momentum.

• Evaluations. Ends 12/8/2022.

41.1. Time evolution of Poisson brackets.
Consider two arbitrary functions f({ξ}, t) and g({ξ}, t). We want to compute the full time
derivative of their Poisson bracket

d

dt
{f, g}.

It means, that
• we have a phase space with Poisson brackets.
• We also have a Hamiltonian.
• We solve the Hamiltonian equations of motion

ξ̇i = {H, ξi}

subject to some initial conditions, and find ξi(t) for all is (we do not distinguish
between coordinates and momenta)
• We compute the Poisson bracket for some known functions on the phase space f and
g which also may depend on time explicitly: {f, g} – it will be some function of all
ξ and time.
• We substitute the solutions ξ(t) in this function and then take the time derivative.

d

dt
{f, g}.

Before we do that I want to compute a much simpler

∂

∂t
{f, g}.

This is partial derivative. So we just consider the explicit dependence of {f, g} on time. This
explicit dependence comes from the explicit time dependence of f and g.

As it is only a partial derivative, we keep fixed all other variables except t, so I will leave
them out to shorten the formulas. According to the definition of partial derivative we need
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to compute:

{f(t+ ∆t), g(t+ ∆t)} − {f(t), g(t)}
= {f(t+ ∆t), g(t+ ∆t)} − {f(t), g(t+ ∆t)}+ {f(t), g(t+ ∆t)} − {f(t), g(t)}
= {f(t+ ∆t)− f(t), g(t+ ∆t)}+ {f(t), g(t+ ∆t)− g(t)}.

Dividing this by ∆t and taking the limit ∆t→ 0 we get

∂

∂t
{f, g} =

{
∂f

∂t
, g

}
+
{
f,
∂g

∂t

}
.

Notice
• The only property of the Poisson brackets which we used is its bi-linearity.

Now Let’s compute the full time evolution of the Poisson bracket {f, g} under the Hamil-
tonian H.

d

dt
{f, g} = ∂

∂t
{f, g}+ {H, {f, g}} =

{
∂f

∂t
, g

}
+
{
f,
∂g

∂t

}
+ {{H, f}, g}+ {f, {H, g}}

=
{
∂f

∂t
+ {H, f}, g

}
+
{
f,
∂g

∂t
+ {H, g}

}

Notice, that in this derivation we used
• the Jacobi’s identity,
• the antisymmetry,
• and the bi-linearity

of the Poisson brackets.
So we get

d

dt
{f, g} =

{
df

dt
, g

}
+
{
f,
dg

dt

}
.

• Notice, that these are the full derivatives, not partial!!

41.2. Integrals of motion.
A conserved quantity is such a function f({ξ}, t), that df

dt
= 0 under the evolution induced

by a Hamiltonian H. So if we have two conserved quantities f({ξ}, t) and g({ξ}, t), then

d

dt
{f, g} =

{
df

dt
, g

}
+
{
f,
dg

dt

}
= 0

So if we have two conserved quantities we can construct a new conserved quantity! Sometimes
it will turn out to be an independent conservation law!

41.3. Angular momentum.
This is an example of a case where the Poisson brackets do not have a global canonical form.
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41.3.1. Poisson Brackets.

Let’s calculate the Poisson brackets for the components of angular momentum: ~M = ~r × ~p.
Coordinate ~r and momentum ~p are canonically conjugated so

{pi, rj} = δij, {pi, pj} = {ri, rj} = 0.
As our coordinates and momenta are canonical, we can use the definition of the Poisson

brackets through derivatives — the way they were introduced from the very beginning. How-
ever, I will show that we can compute the Poisson brackets between the angular momentum
components algebraically — using only the properties of the Poisson brackets.

Using M i = εijkrjpk we write
{M i,M j} = εilkεjmn{rlpk, rmpn} = εilkεjmn

(
rl{pk, rmpn}+ pk{rl, rmpn}

)
=

εilkεjmn
(
rlpn{pk, rm}+ rlrm{pk, pn}+ pkpn{rl, rm}+ pkrm{rl, pn}

)
=

εilkεjmn
(
rlpnδkm − pkrmδln

)
=
(
εilkεjkn − εiknεjlk

)
pnrl = pirj − ripj = −εijkMk

(I used εilkεjnk = δijδln − δinδlj). In short the result is
{M i,M j} = −εijkMk

Notice:
• The components of the angular momentum construct their own phase space closed
under the Poisson brackets!
• Unlike the usual phase space this phase space looks odd (3) dimensional!
• This puzzle is resolved by the following observation:

{M i, ~M2} = {M i,MkMk} = 2{M i,Mk}Mk = −2εikjM jMk = 0.

• So for any Hamiltonian H which depends on ~M only, the ~M2 will be conserved!
d ~M2

dt
= {H, ~M2} = ∂H

∂M i
{M i, ~M2} = 0.

• So in 3D space of ~M all motion will happen on the spheres ~M2 = cons..
• The sphere is 2D – even dimension.
• There is no way to construct global canonical coordinates on this space.

41.3.2. Spin in magnetic field.

We can now consider a Hamiltonian mechanics, say for the Hamiltonian
H = ~h · ~M.

In this case
Ṁ i = {H,M i} = hj{M j,M i} = −hjεjikMk,

or
~̇M = ~h× ~M.

Notice:
• Ṁ2 = 2 ~M · ~̇M = 2 ~M ·

[
~h× ~M

]
= 0.

• Energy is conserved, so ~h · ~M = const. The projection of ~M on the direction of ~h
does not change with time.
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• This equation (Bloch equation) describes a vector ~M rotating with constant angular
velocity around the direction of ~h.

41.3.3. Euler equations

Consider a free rigid body with tensor of inertia Î. The Hamiltonian is just the kinetic energy.

H = 1
2M

i(Î−1)ijM j.

The equations of motion then is

Ṁk = {H,Mk} = 1
2{M

i,Mk}(Î−1)ijM j + 1
2M

i(Î−1)ij{M j,Mk} = εkilM l(Î−1)ijM j.

Let’s write this equation in the system of coordinates of the principal axes of the body. Then
the tensor of inertia is diagonal, and for Mx component we get

Ṁx = M zI−1
yy M

y −MyI−1
zz M

z.

or, using that Mx = IxxΩx, etc we get
IxxΩ̇x = (Izz − Iyy)ΩzΩy,

and two more equations under the cyclic permutations.
• Three degrees of freedom. We must have three second order differential equations
for complete description. We have only three first order equations. Three more first
order equations are missing.
• The equations are written for the components of ~Ω in the non-internal system of
coordinates which is rotating with ~Ω.
• In order to find the orientation of the rigid body as a function of time we need to
write and solve three more first order non-linear differential equations.
• We will do it at some point next semester.



LECTURE 42
Hamilton-Jacobi equation.

• Evaluations. Ends 12/8/2022.

This is the last lecture for the class. In this lecture we will tie together the concepts of
Action, Lagrangian, and Hamiltonian.

42.1. Action on trajectory.
Consider an action

S =
∫ t1

t0
L(qi, {q̇i}, t)dt, qi(t0) = qi,0, qi(t1) = qi,1.

Consider the value of the action on the trajectory as a function of qi,1. What it means is the
following:

• We have an action and thus we have a Lagrangian.
• We write the Lagrangian equations of motion with the boundary conditions: qi(t0) =
qi,0 and qi(t1) = qi,1.
• We solve these equation of motion (with the boundary conditions)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, qi(t0) = qi,0, qi(t1) = qi,1.

and find the functions qi(t; t0, {qi,0}, t1, {qi,1}) — those are coordinates as function of
time, the boundary conditions are the parameters the function depends on.
• We substitute those functions qi(t; t0, {qi,0}, t1, {qi,1}) into the action and take the
integral over time t.
• The result will be a FUNCTION — the value of the action on the trajectory. This
FUNCTION will depend on t0, qi,0, t1, and qi,1 .
• We are interested in how this function depends on qi,1 and t1 with all other parameters
fixed.
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42.2. Momentum.

• To simplify the calculation I will consider only the case of one dgree of freedom. If
we have N degrees of freedom the calculation is almost identical. I will simply give
the general result at the end.

We want to see how the value of the Action changes when we change the q1, while keeping
t1 (as well as q0 and t0) fixed.

If we change the upper limit from q1 to q1 + dq1 the trajectory will also change from q(t)
to q(t) + δq(t), where δq(t0) = 0, and δq(t1) = dq1. The change of the action then is

dS =
∫ t1

t0
L(q + δq, q̇ + δq̇, t)dt−

∫ t1

t0
L(q, q̇, t)dt =

∫ t1

t0

(
∂L

∂q
δq(t) + ∂L

∂q̇
δq̇(t)

)
dt =

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq(t)dt+ ∂L

∂q̇
δq(t)

∣∣∣∣∣
t1

t0

= ∂L

∂q̇
δq(t)

∣∣∣∣∣
t1

t0

= pdq1.

So we have

∂S
∂q

= p.

This is the result for the case of one degree of freedom. If we have N degrees of freedom,
then

∂S
∂qi

= pi, i = 1 . . . N.

• I want to emphasize ones more: S here is not a functional! We already substituted
the solution in. It is here the function of the upper (and lower) boundary conditions.
• The momenta pi thus obtained are the canonical momenta, as we used pi = ∂L

∂q̇i
.
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42.3. Energy.

• To simplify the calculation I will consider only the case of one dgree of freedom. If
we have N degrees of freedom the calculation is almost identical. I will simply give
the general result at the end.

We want to see how the value of the Action changes when we change t1, while keeping q1
(as well as q0 and t0) fixed.

Consider an action

S =
∫ t1

t0
L(q, q̇, t)dt, q(t0) = q0, q(t1) = q1.

Consider the value of the action on the trajectory as a function of t1.
Notice, that t1 is there in two places: as the upper limit of integration and in the boundary

condition. We do not change the value of q = q1 at the upper limit! but the trajectory changes!.
So we have

S(t1 + dt1) =
∫ t1+dt1

t0
L(q + δq, q̇ + δq̇, t)dt = Ldt1 +

∫ t1

t0
L(q + δq, q̇ + δq̇, t)dt.

Using the usual trick we will get
dS = Ldt1 + pδq|t1t0 = Ldt1 − pq̇dt1,

where I used δq(t1) = −q̇(t1)dt1 — see picture.
So we have

∂S
∂t

= −H.
In the case of N degrees of freedom the result is exactly the same.
• Notice, that this is all on a trajectory. So in the right hand side it is the value of
the Hamiltonian on the trajectory. If energy is conserved, then it is just a number
— energy.

42.4. Hamilton-Jacobi equation
We have on a trajectory

−∂S
∂t

= H(p, q, t),
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but on a trajectory we also have p = ∂S
∂q
, so we can write

−∂S
∂t

= H

(
∂S
∂q
, q, t

)
.

This is a partial differential equation for the function S(q, t). This equation is called Hamilton-
Jacobi equation.

We have derived it for 1D, however, the derivation works exactly the same way for
arbitrary number of degrees of freedom.

−∂S
∂t

= H

(
∂S
∂q

,q, t
)
,

where the bold letters mean the collection of all degrees of freedom. The solution of this
equation S(q, t) depends on N coordinates {qi} and time t.

The function S(q, t) at any moment of time defines a N − 1 dimensional hypersurface
S(q, t) = const. in the N dimensional coordinate space — the space of all coordinates. With
time this surface changes. One can imagine these as propagation of wave fronts — the
Hamilton-Jacobi equation then is the non-linear wave equation. The rays corresponding to
these hypersurfaces are different trajectories (for different initial conditions).

Let’s imagine, that we solved this equation and found the function S(q, t, α1 . . . αN),
where N is the number of the coordinates. Let’s see how ∂S

∂αi
depends on time.

d

dt

∂S
∂αi

= q̇j
∂2S
∂qj∂αi

+ ∂

∂t

∂S
∂αi

= q̇j
∂2S
∂qj∂αi

+ ∂

∂αi

∂S
∂t

= q̇j
∂2S
∂qj∂αi

− ∂

∂αi
H

(
∂S
∂q

,q, t
)

= q̇j
∂2S
∂qj∂αi

− ∂H

∂pj

∂2S
∂qj∂αi

= q̇j
∂2S
∂qj∂αi

− q̇j
∂2S
∂qj∂αi

.

Where we used the Hamilton-Jacobi equation and the canonical Hamiltonian equation ∂H
∂pj

=
q̇j . So we see, that

d

dt

∂S
∂αi

= 0.

So all ∂S
∂αi

do not change with time and are constants. Then the N equations

∂S
∂αi

= βi

are implicit definitions of the solutions of the equations of motions qj(t, {αi}, {βi}) that
depend on 2N arbitrary constants, which are given by initial conditions.

42.5. Connection to quantum mechanics.
The quasiclassical approximation of quantum mechanics ~ → 0 transfers the Schrödinger
equation into the Hamilton-Jacobi equation. We start with the Schrödinger equation.

i~
∂

∂t
Ψ = ĤΨ

The Hamiltonian operator Ĥ is constructed in the following way:
• H(p, x) is a polynomial of p.



LECTURE 42. HAMILTON-JACOBI EQUATION. 171

• Substitute p → p̂ ≡ −i~ ∂
∂x

into the Hamiltonian and obtain the operator Ĥ =
H(p̂, x). This operator is called Hamiltonian operator.

Now we want to take the classical limit ~ → 0 in the Schrödinger equation. We cannot
simply put ~ = 0 in the left hand side of the Schrödinger equation, as ~ is also inside the
Hamiltonian and hence will be inside the function Ψ.

The limit ~→ 0 is done in the following way:
• Consider a function Ψ = e

i
~S(x,t). So far S(x, t) is just some function of x and t.

• We first compute how the momentum operator p̂ acts on this Ψ, namely p̂Ψ =
−i~∂Ψ

∂x
= Ψ∂S

∂x
.

• We also compute p̂2Ψ = −i~∂2S
∂x2 e

i
~S +

(
∂S
∂x

)2
e
i
~S = −i~∂2S

∂x2 Ψ +
(
∂S
∂x

)2
Ψ.

• Notice, that at ~→ 0 we have p̂2Ψ→ Ψ
(
∂S
∂x

)2
.

• It is clear, that the same will happen for any (positive integer) power of p̂, namely
at ~→ 0 we have p̂nΨ→ Ψ

(
∂S
∂x

)n
.

• As H(p, x) is a polynomial of p we will have ĤΨ = ΨH
(
∂S
∂x
, x
)
.

• Also i~ ∂
∂t

Ψ = −Ψ∂S
∂t
.

• Consider now the Schrödinger equation.

i~
∂

∂t
Ψ = ĤΨ

in the limit ~→ 0 we substitute i~ ∂
∂t

Ψ→ −Ψ∂S
∂t

and ĤΨ→ ΨH
(
∂S
∂x
, x
)
, and obtain

−∂S
∂t

= H

(
∂S
∂x

, x

)
,

which is the Hamilton-Jacobi equation.
• What we have shown is that in the classical limit ~ → 0 the Schrödinger equation
turns into the the Hamilton-Jacobi equation. So the quantum mechanics becomes
classical mechanics in the limit ~→ 0.
• We also notice, that the quantum mechanical wave function Ψ = e

i
~S . For ~→ 0 the

main contribution to Ψ comes from the trajectories that minimize S — this is the
Hamilton principle! — the classical trajectory is the trajectory which minimizes the
Action! The origin of the Hamilton’s principle is in quantum mechanics.

Closing remarks:
• That’s it.
• Student evaluation. Ends 12/8/2021.
• How much you have learned.


