Homework 1. Due September 4

Problem 1. Problem 1.6 from Classical Mechanics by J. R. Tylor
By evaluating their dot product, find the values of the scalar s for which the two vectors $\vec{b}=\hat{x}+s \hat{y}$ and $\vec{c}=\hat{x}-s \hat{y}$ are orthogonal. (Remember that two vectors are orthogonal if and only of their dot product is zero.) Explain your answers with a sketch.

Problem 2. Problems 1.8 from Classical Mechanics by J. R. Tylor

1. Use the definition $\vec{r} \cdot \vec{s}=r_{1} s_{1}+r_{2} s_{2}+r_{3} s_{3}$ to prove that the scalar product is distributive; that is, that $\vec{r} \cdot(\vec{u}+\vec{v})=\vec{r} \cdot \vec{u}+\vec{r} \cdot \vec{v}$.
2. If \vec{r} and \vec{s} are vectors that depend on time, prove that the product rule for differentiating products applies to $\vec{r} \cdot \vec{s}$, that is, that

$$
\frac{d}{d t}(\vec{r} \cdot \vec{s})=\vec{r} \cdot \frac{d \vec{s}}{d t}+\frac{d \vec{r}}{d t} \cdot \vec{s}
$$

Problem 3. Problem 1.10 from Classical Mechanics by J. R. Tylor
A particle moves in a circle (center O and radius R) with constant angular velocity ω counterclockwise. The circle lies in the $x-y$ plane and the particle lies on the x axis at time $t=0$.

1. Show that the particle's position is given by

$$
\vec{r}(t)=\hat{x} R \cos (\omega t)+\hat{y} R \sin (\omega t)
$$

2. Find the particle's velocity and acceleration. What is the magnitude and the direction of the acceleration? Relate your answers to the well-known properties of uniform circular motion.

Problem 4. Problem 1.17 from Classical Mechanics by J. R. Tylor

1. Prove that the vector product $\vec{r} \times \vec{s}$ (as defined by the following $\vec{p}=\vec{r} \times \vec{s}$ means $\left.p_{x}=r_{y} s_{z}-r_{z} s_{y}, p_{y}=r_{z} s_{x}-r_{x} s_{z}, p_{z}=r_{x} s_{y}-r_{y} s_{x}\right)$ is distributive; that is, that $\vec{r} \times(\vec{u}+\vec{v})=\vec{r} \times \vec{u}+\vec{r} \times \vec{v}$.
2. If \vec{r} and \vec{s} are vectors that depend on time, prove that the product rule for differentiating products applies to $\vec{r} \times \vec{s}$, that is, that

$$
\frac{d}{d t}(\vec{r} \times \vec{s})=\vec{r} \times \frac{d \vec{s}}{d t}+\frac{d \vec{r}}{d t} \times \vec{s}
$$

Be careful with the order of the factors.

Problem 5. Problem 1.19 from Classical Mechanics by J. R. Tylor
If $\vec{r}, \vec{v}, \vec{a}$ denote the position, velocity, and acceleration of a particle, prove that

$$
\frac{d}{d t}[\vec{a} \cdot(\vec{v} \times \vec{r})]=\dot{\vec{a}} \cdot(\vec{v} \times \vec{r})
$$

Problem 6. Problem 1.23 from Classical Mechanics by J. R. Tylor
The unknown vector \vec{v} satisfies $\vec{b} \cdot \vec{v}=\lambda$ and $\vec{b} \times \vec{v}=\vec{c}$, where λ, \vec{b}, and \vec{c} are fixed and known. Find \vec{v} in terms of λ, \vec{b}, and \vec{c}.

Homework 2. Due September 11.

Problem 1. Rising Snake
A snake of length L and linear mass density ρ rises from the table. It's head is moving straight up with the constant velocity v. What force does the snake exert on the table?

Problem 2. 1983-Spring-CM-U-1.
A ball, mass m, hangs by a massless string from the ceiling of a car in a passenger train. At time t the train has velocity \vec{v} and acceleration \vec{a} in the same direction. What is the angle that the string makes with the vertical? Make a sketch which clearly indicates the relative direction of deflection.

Problem 3. 1984-Fall-CM-U-1.
Sand drops vertically from a stationary hopper at a constant rate of 100 gram per second onto a horizontal conveyor belt moving at a constant velocity, \vec{v}, of $10 \mathrm{~cm} / \mathrm{sec}$.

1. What force (magnitude and direction relative to the velocity) is required to keep the belt moving at a constant speed of $10 \mathrm{~cm} / \mathrm{sec}$?
2. How much work is done by this force in 1.0 second?
3. What is the change in kinetic energy of the conveyor belt in 1.0 second due to the additional sand on it?
4. Should the answers to parts 2, and 3. be the same? Explain.

Problem 4. 1994-Fall-CM-U-1
Two uniform very long (infinite) rods with identical linear mass density ρ do not intersect. Their directions form an angle α and their shortest separation is a.

1. Find the force of attraction between them due to Newton's law of gravity.
2. Give a dimensional argument to explain why the force is independent of a.
3. If the rods were of a large but finite length L, what dimensional form would the lowest order correction to the force you found in the first part have?

Note: for $A^{2}<1, \int_{-\pi / 2}^{\pi / 2} \frac{d \theta}{1-A^{2} \sin ^{2} \theta}=\frac{\pi}{\sqrt{1-A^{2}}}$

1 - Homework 2

Homework 3. Due September 18.

Problem 1. Height for quadratic friction.
A body of mass m was thrown straight up with initial velocity v_{0}. The force of the air resistance is $-\gamma v|v|$

- How long it will take for the body to reach the top of its trajectory?
- What the answer will be if $\gamma \rightarrow 0$.
- How long it will take for the body to reach the top of its trajectory if initial velocity is infinite?
- For finite initial velocity, how far up the body will go?
- What the answer will be if $\gamma \rightarrow 0$.
[Hint: $\int \frac{d x}{x^{2}+1}=\tan ^{-1}(x), \int \tan (x) d x=-\log (\cos (x)), \cos \left(\tan ^{-1}(x)\right)=\frac{1}{\sqrt{1+x^{2}}}$].

Problem 2. Hole of Earth.
Assume that the earth is a sphere, radius R and uniform mass density, ρ. Suppose a shaft were drilled all the way through the center of the earth from the north pole to the south. Suppose now a bullet of mass m is fired from the center of the earth, with velocity v_{0} up the shaft. Assuming the bullet does not go beyond the earth's surface and neglecting the air resistance

- calculate in what time the bullet will return back?
- how does this time depend on v_{0} ?
- how does this time depend on m ?

Problem 3. Rope
A simple Atwood's machine consists of a heavy rope of length l and linear density ρ hung over a pulley (see Fig.). Neglecting the part of the rope in contact with the pulley, find $x(t)$ if the initial conditions are $x(t=0)=l / 2$ and $v(t=0)=v_{0}$.

Problem 4. Bucket

A weightless bucket which initially contains mass m_{0} of water is being drawn up a well by a rope which exerts a steady force $P=m_{0} g$ on the bucket. Initially the bucket is at rest. The water leaks out of the bucket at a constant rate, so that after a time T, before the bucket reaches the top, the bucket is empty. Find the velocity of the bucket just at the instant it becomes half empty. Express your answer in terms of T, and g, the acceleration due to gravity.

Problem 5. Extra for Honors

Plot coordinate vs. time for an overdamped oscillator with initial conditions $x(t=0)=0$, $v(t=0)=v_{0}$.

- What is the slope of the graph at $t=0$?
- What is the dependence of coordinate on time at $t \rightarrow \infty$?
- Find the general solution for the damped oscillator in the case $\gamma=\omega_{0}$. Hint: The solution must still have two independent constants.

Homework 4. Due September 25.

Problem 1. Problem 5.44 from Classical Mechanics by J. R.Tylor
Another interpretation of the quality factor Q of a resonance comes from the following: Consider a motion of a driven damped oscillator (damping force $F_{d m p}=-2 \beta m v$) after any transients have died out, and suppose that it is being driven close to resonance, so you can set $\omega=\omega_{0}$, where ω is the frequency of the force and ω_{0} is the natural frequency of the oscillator.

1. Show that the oscillator's total energy (kinetic plus potential) is $E=\frac{1}{2} m \omega^{2} A^{2}$, where A is the amplitude.
2. Show that the energy $\Delta E_{\text {dis }}$ dissipated during one cycle by the damping force $F_{d m p}$ is $2 \pi m \beta \omega A^{2}$. (Remember that the rate at which a force does work is $F v$.)
3. Hence show that Q is 2π times the ratio $E / \Delta E_{\text {dis }}$.

Problem 2. 1985-Spring-CM-U-3.
A damped one-dimensional linear oscillator is subjected to a periodic driving force described by a function $F(t)$. The equation of motion of the oscillator is given by

$$
m \ddot{x}+b \dot{x}+k x=F(t),
$$

where $F(t)$ is given by

$$
F(t)=F_{0}(1+\sin (\omega t)) .
$$

The driving force frequency is $\omega=\omega_{0}$ and the damping by $b / 2 m=\omega_{0}$, where $\omega_{0}^{2}=k / m$. At $t=0$ the mass is at rest at the equilibrium position, so that the initial conditions are given by $x(0)=0$, and $\dot{x}(0)=0$. Find the solution $x(t)$ for the position of the oscillator vs. time.

Problem 3. 1994-Fall-CM-U-2
Suppose that the payload (e.g., a space capsule) has mass m and is mounted on a two-stage rocket (see figure below). The total mass - both rockets fully fueled, plus the payload - is $N m$. The mass of the second-stage plus the payload, after first-stage burnout and separation, is $n m$. In each stage the ratio of burnout mass (casing) to initial mass (casing plus fuel) is r, and the exhaust speed is v_{0}.

1. Find the velocity v_{1} gained from first-stage burn starting from rest (and ignoring gravity). Express your answer in terms of v_{0}, N, n, and r.
2. Obtain a corresponding expression for the additional velocity, v_{2} gained from the second-stage burn.
3. Adding v_{i} and v_{2}, you have the payload velocity v in terms of N, n, v_{0}, and r. Taking N, v_{0}, and r as constants, find the value for n for which v is a maximum.
4. Show that the condition for v to be a maximum corresponds to having equal gains of velocity in the two stages. Find the maximum value of v, and verify that it makes sense for the limiting cases described by $r=0$ and $r=1$.
5. You need to build a system to obtain a payload velocity of $10 \mathrm{~km} / \mathrm{sec}$, using rockets for which $v_{0}=2.5 \mathrm{~km} / \mathrm{sec}$ and $r=0.1$. Can you do it with a two-stage rocket?
6. Find an expression for the payload velocity of a single-stage rocket with the same values of N, r, and v_{0}. Can you do it with a single-stage rocket by taking the same conditions as in the previous point?

Problem 4. Hovering rocket
How the rocket should burn its fuel (what is $m(t)$) in order to hover in the Earth gravitational field close to the Earth surface.

Homework 5. Due October 2.

Problem 1. Tensor of inertia.
In the frame where the tensor of inertia is diagonal calculate it for:

1. A uniform disc of mass m and radius R.
2. A uniform solid (not hollow) sphere of mass m and radius R.
3. A thin stick of length L and mass m, if the origin is at one end of the stick.
4. A thin stick of length L and mass m, if the origin is at the center of the stick.

You have to show how you compute them. Just copying the answers from Wikipedia is not enough.

Problem 2. 1989-Spring-CM-U-2.
A platform is free to rotate in the horizontal plane about a frictionless, vertical axle. About this axle the platform has a moment of inertia I_{p}. An object is placed on a platform a distance R from the center of the axle. The mass of the object is m and it is very small in size. The coefficient of friction between the object and the platform is μ. If at $t=0$ a torque of constant magnitude τ_{0} about the axle is applied to the platform when will the object start to slip?

Problem 3. 1990-Spring-CM-U-1.
A particle of mass m and charge e is moving in an electric field \vec{E} and a magnetic field \vec{H}.

1. What is the general formula for the force acting on a charged particle by the fields? Write down the vector equation of motion for this charged particle in three dimensions.
2. Let $\vec{E}=0$, and \vec{B} be uniform in space and constant in time. If the particle has an initial velocity which is perpendicular to the magnetic field, integrate the equation of motion in component form to show that the trajectory is a circle with radius $r=v / \omega$, where $\omega=e B / m$, (or $e B / m c$ if you work in the Gaussian unit system).
3. Now suppose that $\vec{E}=\left(0, E_{y}, E_{z}\right)$, and $\vec{B}=(0,0, B)$ are both uniform in space and constant in time, integrate the equation of motion in component form again, assuming that the particle starts at the origin with zero initial velocity.

Problem 4. A ball on a string.
A ball is on a frictionless table. A string is connected to the ball as shown in the figure. The ball is started in a circle of radius R with angular velocity ω_{0}. The force exerted on a string is then increases so that the distance between the hole and the ball decreases and is a given function of time $r(t)$. Assuming the string stays straight and that it only exerts a force parallel to its length.

1. Find the velocity of the ball as a function of time.
2. What is polar ϕ component of the force must be in order for this motion to be possible?

Extra for Honors

Problem 5. 1990-Spring-CM-U-2.
A uniform rod, of mass m and length $2 l$, is freely rotated at one end and is initially supported at the other end in a horizontal position. A particle of mass αm is placed on the rod at the midpoint. The coefficient of static friction between the particle and the rod is μ. If the support is suddenly removed:

1. Calculate by what factor the reaction at the hinge is instantaneously reduced?
2. The particle begins to slide when the falling rod makes an angle θ with the horizontal. Calculate this angle.
[Hint: To do this part, you need both components of the force equation on the mass αm; plus the torque equation and the equation for the conservation of the energy of the whole system.]

Homework 6. Due October 9.

Problem 1. 1991-Spring-CM-U-3.
A uniform sphere with a mass M and radius R is set into rotation with a horizontal angular velocity ω_{0}. At $t=0$, the sphere is placed without bouncing onto a horizontal surface as shown. There is friction between the sphere and the surface. Initially, the sphere slips, but after an unknown time T, it rolls without slipping.

1. What is the angular speed of rotation when the sphere finally rolls without slipping at time T ?
2. How much energy is lost by the sphere between $t=0$ and $t=T$?
3. Show that amount of energy lost is equal to the work done against friction causing the sphere to roll without slipping?

Problem 2. 1993-Fall-CM-U-2.
A "Yo-Yo" (inner and outer radii r and R) has mass M and moment of inertia about its symmetry axis $M k^{2}$.

1. The Yo-Yo is attached to a wall by a massless string and located on the slope as shown in Fig. a). The coefficient of static friction between the slope and Yo-Yo is μ. Find the largest angle θ before the Yo-Yo starts moving down.
2. Now, consider Yo-Yo which is falling down as shown in Fig. b). Find the ratio of its translational and rotational kinetic energies.

Problem 3. 1994-Spring-CM-U-3
A wire has the shape of a hyperbola, $y=c / x, c>0$. A small bead of mass m can slide without friction on the wire. The bead starts at rest from a height h as shown in the figure

1. Find the velocity vector \vec{v} of the bead as a function of x.
2. Find the force \vec{F} that the bead exerts on the wire as a function of x.

Problem 4. 1996-Fall-CM-U-1
Two pucks, each of mass m, are connected by a massless string of length $2 L$ as illustrated below. The pucks lie on a horizontal, frictionless sheet of ice. The string is initially straight (i.e., $\theta=90^{\circ}$). A constant, horizontal force F is applied to the middle of the string in a direction perpendicular to the line joining the pucks. When the pucks collide, they stick together. How much mechanical energy is lost in the collision?

Extra for Honors

Problem 5. 1994-Spring-CM-U-4
A person wants to hold up a large object of mass M by exerting a force F on a massless rope. The rope is wrapped around a fixed pole of radius R. The coefficient of friction between the rope and the pole is μ. If the rope makes $n+1 / 2$ turns around the pole, what is the maximum weight the person can support?

Homework 7. Due October 16.

Problem 1. Kepler orbits.
The shape of the Kepler's orbits (bounded and unbounded) is defined by its eccentricity ϵ. Find the shape (its equation in the Cartesian coordinates) for

1. $\epsilon=0$.
2. $0<\epsilon<1$.
3. $\epsilon=1$. What is the energy E of the body?
4. $\epsilon>1$.

Problem 2. Scattering.
A comet is approaching the sun. Its velocity at infinity was v_{0}. The impact parameter at infinity was d. Find the angle of deflection θ.

Problem 3. 1990-Fall-CM-U-2.jpg
An artificial Earth satellite is initially orbiting the earth in a circular orbit of radius R_{0}. At a certain instant, its rocket fires for a negligibly short period of time. This firing accelerates the satellite in the direction of motion and increases its velocity by a factor of α. The change of satellite mass due to the burning of fuel can be considered negligible.

1. Let E_{0} and E denote the total energy of the satellite before and after the firing of the rocket. Find E solely in terms of E_{0} and α.
2. For $\alpha>\alpha_{\mathrm{es}}$ the satellite will escape from earth. What is α_{es} ?
3. For $\alpha<\alpha_{\mathrm{es}}$ the orbit will be elliptical. For this case, find the maximum distance between the satellite and the center of the earth, $R_{\max }$, in terms of R_{0} and α.

1 - Homework 7

Homework 8. Due October 23.

Problem 1. 1994-Fall-CM-U-4
The most efficient way to transfer a spacecraft from an initial circular orbit at R_{1} to a larger circular orbit at R_{2} is to insert it into an intermediate elliptical orbit with radius R_{1} at perigee and R_{2} at apogee. The following equation relates the semi-major axis a, the total energy of the system E and the potential energy $U(r)=-G M m / r \equiv-k / r$ for an elliptical orbit of the spacecraft of mass m about the earth of mass M :

$$
R_{1}+R_{2}=2 a=\frac{k}{|E|}
$$

1. Derive the relation between the velocity v and the radius R for a circular orbit.
2. Determine the velocity increase required to inject the spacecraft into the elliptical orbit as specified by R_{1} and R_{2}. Let v_{1} be the velocity in the initial circular orbit and v_{p} be the velocity at perigee after the first boost so $\Delta v=v_{p}-v_{1}$.
3. Determine the velocity increment required to insert the spacecraft into the second circular orbit when it reaches apogee at $r=R_{2}$. In this case let v_{2} be the velocity in the final orbit and v_{a} be the velocity at apogee so $\Delta v=v_{2}-v_{a}$.

Problem 2. 2000-Spring-CM-U-1
A populated spherical planet, diameter a, is protected from incoming missiles by a repulsive force field described by the potential energy function:

$$
V(r)=k a(a+r) e^{-r / a}, \quad r>a / 2
$$

Here $k>0$ and r is the distance of the missile from the center of the planet. Neglect all other forces on the missile.

The initial speed of a missile of mass m relative to the planet is v_{0} when it is a long way away, and the missile is aimed in such a way that the closest it would approach the center of the planet, if it were not deflected at all by the force field or contact with the surface, would be at an impact parameter b (see the diagram). The missile will not harm the planet if it does not come into contact with its surface. Therefore, we wish to explore, as a function of v_{0} the range of values of b :

$$
0 \leq b \leq B
$$

such that the missile will hit the planet.

1. If v_{0} is less than a certain critical velocity, v_{c}, the missile will not be able to reach the planet at all, even if $b=0$. Determine v_{c}.
2. For missiles with velocity greater than v_{c} find B as a function of v_{0}.

1 - Homework 8

Problem 3. 2001-Spring-CM-U-1
We wish to extend a flexible wire of length L from a point on the equator of the earth, reaching into space in a straight line. Its uniform linear density is ρ. Assume the earth is spherical, radius R, and rotating at Ω radians per second. The acceleration due to gravity at the surface of the earth is g, which of course decreases according to Newton's Law of gravity as the distance from the center of the earth is varied.

Once set in equilibrium with respect to the rotating earth we assume the wire is strong enough not to break, and is held only at its contact point with the earth's surface, where the tension is T_{s}. There are no other forces on the wire except gravity.

1. Find the tension T of the wire at an arbitrary distance along the wire, assuming that the wire is long enough so that it will not fall dawn.
2. Find T_{s}, the tension at the earth's surface.
3. If the wire is too short it will fall down. Find the critical length, L_{c}, of the wire in this case. You may assume for the purpose of solving the equations involved, that the length, L_{c}, of the wire is much bigger than the radius of the earth, R.

Problem 4. Problem 6.2 from Taylor
Find the shortest path from point $\left(R, z_{1}, \phi_{1}\right)$ to point $\left(R, z_{2}, \phi_{2}\right)$ on a cylinder of radius R in cylindrical coordinates.

Problem 5. Extra for Honors
In a disk mill a massive cylinder of radius R and mass M can rotate around its geometrical axis. After the initial push it freely rotates with angular velocity Ω around vertical axis and is rolling on the horizontal plate, as shown on the figure. What force the disk applies to the plate? The disk rolls without slipping.

Homework 9. Due October 30.

Problem 1. Problem 6.5 from Classical Mechanics by J. R.Tylor
Consider a concave, hemispherical mirror with points A and B at opposite ends of a diameter. Consider a ray of light traveling in a vacuum from A to B with one reflection at a point P, in the same vertical plane as A and B. According to the law of reflection, the actual path goes via point P_{0} at the bottom of the hemisphere $(\theta=0)$. Find the time of travel along the path $A P B$ as a function of θ and show that it is a maximum at $P=P_{0}$! (the correct statement of the Fermat's principle is that the time of travel for light must be stationary for arbitrary variation of the path.)

Problem 2. Problem 6.22 from Classical Mechanics by J. R.Tylor
You are given a string of fixed length l with one end fastened at the origin O, and you are to place the string in the $x y$ plane with its other end on the x axis in such a way as to enclose the maximum area between the string and the x axis. Show, that the required shape is a semicircle. [See the problem 6.22 in Tylor for hints.]

Problem 3. Problem 6.24 from Classical Mechanics by J. R.Tylor
Consider a medium in which the refractive index is inversely proportional to r^{2}; that is, $n=a / r^{2}$, where r is the distance from the origin. Use Fermat's principle to find the path of a ray of light traveling in a plane containing the origin. [See the problem 6.24 in Tylor for hints.]

Problem 4. Extra for Honors (and fun for the rest of us.)
A string of tension T and linear mass density ρ connects two horizontal points distance L apart from each other. y is the vertical coordinate pointing up, and x the is horizontal coordinate.

- Write down the functional of potential energy of the string vs. the shape of the string $y(x)$. Specify the boundary conditions for the function $y(x)$.
- Write down the equation which gives the shape of minimal energy for the string.
- Find the solution of the equation which satisfies the boundary conditions. (Do not try to solve the transcendental equation for one of the constant. Just write it down.)
- In the case $T \gg \rho g L$, the shape is approximately given by $y \approx-\frac{\alpha}{2} x(L-x)$. Find α.

Homework 10. Due November 6.

Problem 1. 1991-Fall-CM-U-3.
A small block of mass m is attached near the outer rim of a solid disk of radius a which also has mass m. The disk rolls without slipping on a horizontal straight line.

1. Find the equation of motion for the angle $\theta(t)$ (measured with respect to the vertical as shown) for all θ.
2. Find the system's small amplitude oscillation frequency about its stable equilibrium position.

Problem 2. 1999-Spring-CM-U-2
An infinitely long straight frictionless wire, which passes through the origin of the coordinate system, is held at a constant angle α with respect to the (vertical) z axis. The wire rotates about the z axis at constant angular velocity ω, so that it describes the surface of a pair of right circular cones, centered on the vertical axis, with their common vertices at the origin. Hence, an arbitrary point P, fixed on the wire, describes a horizontal circle as the wire rotates. A bead of mass m is free to slide along this wire under the influence of gravity and without friction. Let r be the distance of the bead from the apex of the cone, positive if above and negative if below the vertex.

1. Write the Lagrangian for this system in terms of r, α, ω, m, and g.
2. From the Lagrangian, obtain the differential equation of motion for the bead.
3. Solve the equation of motion subject to the initial conditions that $r=r_{0}$ and $d r / d t=0$ at $t=0$. Find the condition on r_{0} which determines whether the bead will rise or fall on the wire.
4. Use your solution to the equation of motion to find $r(t)$ in the limit that ω goes to zero and show that it is consistent with simple kinematics.

Problem 3. Problem 7.29 from Classical Mechanics by J. R.Tylor
A simple pendulum (mass m, length l) whose point of support P is attached to the edge of a wheel (center O, radius R) that is forced to rotate at a fixed angular velocity ω. At $t=0$, the point P is level with O on the right. Write down the Lagrangian and find the equation of motion for the angle ϕ. Check that your answer makes sense in the special case that $\omega=0$. [See the problem 7.29 in Tylor for hints.]

Problem 4. Problem 7.31 from Classical Mechanics by J. R.Tylor
A simple pendulum (mass M, length L) is suspended from a cart (mass m) that can oscillate on the end of the spring of force constant k.

1. Write the Lagrangian in terms of the two generalized coordinates x and ϕ, where x is the extension of the spring from the its equilibrium length. Find the two Lagrange equations. (Warning: They're pretty ugly!)
2. Simplify the equations of motion for the case that both x and ϕ are small. (They're still pretty ugly, and still are coupled.)

Homework 11. Due November 13.

Problem 1. Problem 7.33 from Classical Mechanics by J. R.Tylor
A bar of soap (mass m) is at rest on a frictionless plate that rests on a horizontal table. At time $t=0$, I start raising one edge of the plate so that the plate pivots about the opposite edge with constant angular velocity ω, and the soap starts to slide toward the downhill edge. Show that the equation of motion for the soap has the form $\ddot{x}-\omega^{2} x=-g \sin (\omega t)$, where x is the soap's distance from the downhill edge. Solve this for $x(t)$, given that $x(0)=x_{0}$. [See the problem 7.33 in Tylor for hints.]

Problem 2. Problem 7.35 from Classical Mechanics by J. R.Tylor
The figure shows top view of a smooth horizontal wire hoop that is forced to rotate at a fixed angular velocity ω about a vertical axis through the point A. A bead of mass m is threaded on the hoop and is free to move around it, with its position specified by the angle ϕ that it makes at the center with the diameter $A B$. Find the Lagrangian for this system using ϕ as your generalized coordinate. Use the Lagrangian equations of motion to show that the bead oscillates about point B exactly like a simple pendulum. What is the frequency of these oscillations if their amplitude is small? [See the problem 7.35 in Tylor for hints.]

Problem 3. Problem 7.48 from Classical Mechanics by J. R.Tylor
Let $F\left(q_{1}, \ldots, q_{n}\right)$ be any function of the generalized coordinates $\left(q_{1}, \ldots, q_{n}\right)$ of a system with Lagrangian $L\left(q_{1}, \ldots, q_{n}, \dot{q}_{1}, \ldots, \dot{q}_{n}, t\right)$. Prove directly, by writing the equations of motion that the two Lagrangians L and $L^{\prime}=L+d F / d t$ give exactly the same equations of motion.

Problem 4. Problem 7.49 from Classical Mechanics by J. R.Tylor
Consider a particle of mass m and charge q moving in a uniform constant magnetic field \vec{B} in the z direction.

1. Prove, that \vec{B} can be written as $\vec{B}=\nabla \times \vec{A}$ with $\vec{A}=\frac{1}{2} \vec{B} \times \vec{r}$. Prove equivalently, that in cylindrical coordinates, $\vec{A}=\frac{1}{2} B \rho \hat{\phi}$.
2. Write the Lagrangian in sylindrical polar coordinates and find the three corresponding Lagrange equations.
3. Describe (shortly!) those solutions of the Lagrange equations in which ρ is constant. [See the problem 7.49 in Tylor for hints.]

Homework 12. Due November 20.

Problem 1. Problem 7.34 from Classical Mechanics by J. R.Tylor
Consider the well-known problem of a cart of mass m moving along the x axis attached to a spring (force constant k), whose other end is held fixed. If we ignore the mass of the spring, then we know that the cart executes simple harmonic motion with angular frequency $\omega=\sqrt{k / m}$.

1. Assuming, that the spring has mass M, that it is uniform and stretches uniformly, show that its kinetic energy is $\frac{1}{6} M \dot{x}^{2}$. (As usual x is extension of the spring from its equilibrium length.)
2. Write down the Lagrangian for the system of cart plus spring. Write down the Lagrange equation of motion. Find the frequency of the small oscillations.
[See the problem 7.34 in Tylor for hints.]

Problem 2. Problem 7.37 from Classical Mechanics by J. R.Tylor

Two equal masses $m_{1}=m_{3}=m$, are joined be a massless string of length L, that passes through a hole in a frictionless horizontal table. The first mass slides on the table with the second hangs below the table and moves up and down in a vertical line.

1. Assuming that the string remains taut, write down the Lagrangian for this system in terms of polar coordinates (r, ϕ) of the mass on the table.
2. Find the two Lagrangian equations of motion and interpret the ϕ equation in terms of the angular momentum l of the first mass.
3. Express $\dot{\phi}$ in terms of l and eliminate $\dot{\phi}$ from the r equation. Now use the r equation to find the value $r=r_{0}$ at which the first mass can move in a circular path. Interpret your answer in Newtonian terms.
4. Suppose the first mass is moving in a circular path and is given a small radial nudge. Write $r(t)=r_{0}+\epsilon(t)$, and rewrite the r equation in terms of $\epsilon(t)$ dropping all powers of $\epsilon(t)$ higher than linear. Show, that the circular path is stable and that $r(t)$ oscillates about r_{0}.
5. Find the frequency of these oscillations.

Problem 3. Problem 7.38 from Classical Mechanics by J. R.Tylor
A particle is confined to move on the surface of a circular cone with its axis on the vertical z axis, vertex at the origin (pointing down), and half angel α.

1. Write down the Lagrangian L in terms of spherical polar coordinates r and ϕ.
2. Find the two equations of motion. Interpret the ϕ equation in terms of the angular momentum l_{z}, and use it to eliminate $\dot{\phi}$ from the r equation in favor of the constant l_{z}.
3. Show that your r equation make sense in the case that $l_{z}=0$.
4. Find the value r_{0} of r at which the particle can remain in a horizontal circular path.
5. Suppose the particle is given a small radial kick, so that $r(t)=r_{0}+\epsilon(t)$, where $\epsilon(t)$ is small. Use the r equation to decide whether the circular path is stable. If so, which what frequency does r oscillate about r_{0} ?

Problem 4. Problem 7.41 from Classical Mechanics by J. R.Tylor
Consider a bead of mass m sliding without friction on a wire that is bent in the shape of a parabola $z=k \rho^{2}$, which is spun with constant angular velocity ω about its vertical axis.

1. Use cylindrical polar coordinates and write down the Lagrangian in terms of ρ as the generalized coordinate.
2. Find the equation of motion of the bead and determine whether there are positions of equilibrium, that is, values of ρ at which the bead can remain fixed, without sliding up or down the spinning wire.
3. Find out the conditions at which the equilibrium points you found are stable.

Homework 13. Due November 27.

Problem 1. Problem 13.2 from Classical Mechanics by J. R.Tylor
Consider a mass m constrained to move in a vertical line under the influence of gravity. Using the coordinate x measured vertically down from a convenient origin O, write down the Lagrangian L and find the generalized momentum $p=\partial L / \partial \dot{x}$. Find the Hamiltonian H as a function of x and p, and write down the Hamiltonian's equations of motion.

Problem 2. Problem 13.3 from Classical Mechanics by J. R.Tylor
Consider the Atwood machine, but suppose that the pulley is a uniform disc of mass M and radius R. Using x as you generalized coordinate,

1. Write down the Lagrangian.
2. Write down the generalized momentum p, and the Hamiltonian H.
3. Find Hamilton's equations and use them to find the acceleration \ddot{x}.

Problem 3. Problem 13.5 from Classical Mechanics by J. R.Tylor
A bead of mass m is threaded on a frictionless wire that is bent into a helix with cylindrical polar coordinates (ρ, ϕ, z) satisfying $z=c \phi$ and $\rho=R$, with c and R constants. The z axis points vertically up and gravity vertically down. Using ϕ as your generalized coordinate,

1. Write down the kinetic and potential energies.
2. Write down the Hamiltonian H.
3. Write down the Hamiltonian's equations and solve for $\ddot{\phi}$ and hence \ddot{z}.
4. Explain your result in terms of Newtonian dynamics.
5. Consider a special case $R=0$.

Problem 4. Problem 13.6 from Classical Mechanics by J. R.Tylor
Consider the well-known problem of a cart of mass m moving along the x axis attached to a spring (force constant k), whose other end is held fixed. Take the spring to be uniform and of mass M. Use the spring's extension x as generalized coordinate.

1. Write down the Hamiltonian.
2. Write down the Hamiltonian equations of motion.
3. Solve the equations and find out the frequency of the oscillations.

Homework 14. The last one. Due December 4.

The grade for this HW will substitute for the lowest HW grade you have had through the semester (in my class, naturally.)
Problem 1. 1983-Fall-CM-U-3.
A hollow thin walled cylinder of radius r and mass M is constrained to roll without slipping inside a cylindrical surface with radius $R+r$ (see diagram). The point B coincides with the point A when the cylinder has its minimum potential energy.

1. What is the frequency of small oscillations around the equilibrium position?
2. What would the frequency of small oscillations be if the contact between the surfaces is frictionless?

Problem 2. 1987-Fall-CM-U-1.
A block of mass m slides on a frictionless table with velocity v. At $x=0$, it encounters a frictionless ramp of mass $m / 2$ which is sitting at rest on the frictionless table. The block slides up the ramp, reaches maximum height, and slides back down.

1. What is the velocity of the block when it reaches its maximum height?
2. How high above the frictionless table does the block rise?
3. What are the final velocities of the block and the ramp?

Problem 3. 1991-Spring-CM-U-2.
A circular platform of mass M and radius R is free to rotate about a vertical axis through its center. A man of mass M is originally standing right at the edge of the platform at the end of a line painted along a diameter of the platform. The platform and man are set spinning with an angular velocity ω_{0}. At $t=0$ the man begins to walk toward the center of the platform along the line so that his distance from the center is $R-v_{0} t$. If the man slips off the line when he is at $R / 2$, what must be the coefficient of friction between the man and the platform?

