
Homework 1. Due Sept. 5

Problem 1. From Classical Mechanics by J. R.Tylor

Problems: 1.6, 1.8, 1.10, 1.17, 1.19, 1.23
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Homework 2. Due September 12.

Problem 1. Rising Snake

A snake of length L and linear mass density ρ rises from the table. It’s head is moving
straight up with the constant velocity v. What force does the snake exert on the table?

Problem 2. 1983-Spring-CM-U-1.

A ball, mass m, hangs by a massless string from the ceiling of a car in a passenger train. At
time t the train has velocity ~v and acceleration ~a in the same direction. What is the angle
that the string makes with the vertical? Make a sketch which clearly indicates the relative
direction of deflection.

Problem 3. 1984-Fall-CM-U-1.

Sand drops vertically from a stationary hopper at a rate of 100 gm/sec onto a horizontal
conveyor belt moving at a constant velocity, ~v, of 10 cm/sec.

1. What force (magnitude and direction relative to the velocity) is required to keep the
belt moving at a constant speed of 10 cm/sec?

2. How much work is done by this force in 1.0 second?

3. What is the change in kinetic energy of the conveyor belt in 1.0 second due to the
additional sand on it?

4. Should the answers to parts 2. and 3. be the same? Explain.

Problem 4. 1994-Fall-CM-U-1

Two uniform very long (infinite) rods with identical linear mass density ρ do not intersect.
Their directions form an angle α and their shortest separation is a.

1. Find the force of attraction between them due to Newton’s law of gravity.

2. Give a dimensional argument to explain why the force is independent of a.

3. If the rods were of a large but finite length L, what dimensional form would the lowest
order correction to the force you found in the first part have?

Note: for A2 < 1,
∫ π/2
−π/2

dθ
1−A2 sin2 θ

= π√
1−A2
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Homework 3. Due September 19.

Problem 1. Height for quadratic friction.

A body of mass m was thrown straight up with initial velocity v0. The force of the air
resistance is −γv|v|

• How long it will take for the body to reach the top of its trajectory?

• What the answer will be if γ → 0.

• How long it will take for the body to reach the top of its trajectory if initial velocity is
infinite?

• For finite initial velocity, how far up the body will go?

• What the answer will be if γ → 0.

[Hint:
∫

dx
x2+1

= tan−1(x),
∫

tan(x)dx = − log(cos(x)), cos(tan−1(x)) = 1√
1+x2

.]

Problem 2. Hole of Earth.

Assume that the earth is a sphere, radius R and uniform mass density, ρ. Suppose a shaft
were drilled all the way through the center of the earth from the north pole to the south.
Suppose now a bullet of mass m is fired from the center of the earth, with velocity v0 up
the shaft. Assuming the bullet does not go beyond the earths surface and neglecting the air
resistance

• calculate in what time the bullet will return back?

• how does this time depend on v0?

• how does this time depend on m?
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Problem 3. Rope

A simple Atwoods machine consists of a heavy rope of length l and linear density ρ hung
over a pulley (see Fig.). Neglecting the part of the rope in contact with the pulley, find x(t)
if the initial conditions are x(t = 0) = l/2 and v(t = 0) = v0.

Problem 4. Bucket

A weightless bucket which initially contains mass m0 of water is being drawn up a well by a
rope which exerts a steady force P = m0g on the bucket. Initially the bucket is at rest. The
water leaks out of the bucket at a constant rate, so that after a time T, before the bucket
reaches the top, the bucket is empty. Find the velocity of the bucket just at the instant
it becomes half empty. Express your answer in terms of T, and g, the acceleration due to
gravity.

Problem 5. Extra for Honors

Plot coordinate vs. time for an overdamped oscillator with initial conditions x(t = 0) = 0,
v(t = 0) = v0.

• What is the slope of the graph at t = 0?

• What is the dependence of coordinate on time at t→∞?

• Find the general solution for the damped oscillator in the case γ = ω0. Hint: The
solution must still have two independent constants.
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Homework 4. Due September 26.

Problem 1. From Classical Mechanics by J. R.Tylor

Problem 5.44

Problem 2. 1985-Spring-CM-U-3.

A damped one-dimensional linear oscillator is subjected to a periodic driving force described
by a function F (t). The equation of motion of the oscillator is given by

mẍ+ bẋ+ kx = F (t),

where F (t) is given by
F (t) = F0 (1 + sin(ωt)) .

The driving force is characterized by ω = ω0 and the damping by φ = b/2m = ω0, where
ω2
0 = k/m. At t = 0 the mass is at rest at the equilibrium position, so that the initial

conditions are given by x(0) = 0, and ẋ(0) = 0. Find the solution x(t) for the position of the
oscillator vs. time.

Problem 3. 1994-Fall-CM-U-2

Suppose that the payload (e.g., a space capsule) has mass m and is mounted on a two-stage
rocket (see figure below). The total mass — both rockets fully fueled, plus the payload — is
Nm. The mass of the second-stage plus the payload, after first-stage burnout and separation,
is nm. In each stage the ratio of burnout mass (casing) to initial mass (casing plus fuel) is
r, and the exhaust speed is v0.

1. Find the velocity v1 gained from first-stage burn starting from rest (and ignoring grav-
ity). Express your answer in terms of v0, N , n, and r.

2. Obtain a corresponding expression for the additional velocity, v2 gained from the
second-stage burn.

3. Adding vi and v2, you have the payload velocity v in terms of N , n, v0, and r. Taking
N , v0, and r as constants, find the value for n for which v is a maximum.

4. Show that the condition for v to be a maximum corresponds to having equal gains of
velocity in the two stages. Find the maximum value of v, and verify that it makes sense
for the limiting cases described by r = 0 and r = 1.

5. You need to build a system to obtain a payload velocity of 10km/sec, using rockets for
which v0 = 2.5km/sec and r = 0.1. Can you do it with a two-stage rocket?

6. Find an expression for the payload velocity of a single-stage rocket with the same values
of N , r, and v0. Can you do it with a single-stage rocket by taking the same conditions
as in the previous point?
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Problem 4. Hovering rocket

How the rocket should burn its fuel (what is m(t)) in order to hover in the Earth gravitational
field close to the Earth surface.

Problem 5. Extra for Honors

A small rocket burns fuel according to the law m(t) = m0e
−αt. It starts from the ground

with no initial velocity and flies straight up.

• How large α must be in order for the rocket to take off.

• Find how high the rocket is at time t if the air resistance is −γv.

• What is the maximum velocity the rocket will have? At what time after the start will
it happen?
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Homework 5. Due October 3.

Problem 1. Tensor of inertia.

In the frame where the tensor of inertia is diagonal calculate it for:

1. A uniform disc of mass m and radius R.

2. A uniform solid (not hollow) sphere of mass m and radius R.

3. A thin stick of length L and mass m, if the origin is at one end of the stick.

4. A thin stick of length L and mass m, if the origin is at the center of the stick.

Problem 2. 1989-Spring-CM-U-2.

A platform is free to rotate in the horizontal plane about a frictionless, vertical axle. About
this axle the platform has a moment of inertia Ip. An object is placed on a platform a
distance R from the center of the axle. The mass of the object is m and it is very small in
size. The coefficient of friction between the object and the platform is µ. If at t = 0 a torque
of constant magnitude τ0 about the axle is applied to the platform when will the object start
to slip?

Problem 3. 1990-Spring-CM-U-1.

A particle of mass m and charge e is moving in an electric field ~E and a magnetic field ~H.

1. What is the general formula for the force acting on a charged particle by the fields?
Write down the vector equation of motion for this charged particle in three dimensions.

2. Let ~E = 0, and ~B be uniform in space and constant in time. If the particle has an
initial velocity which is perpendicular to the magnetic field, integrate the equation of
motion in component form to show that the trajectory is a circle with radius r = v/ω,
where ω = eB/m, (or eB/mc if you work in the Gaussian unit system).

3. Now suppose that ~E = (0, Ey, Ez), and ~B = (0, 0, B) are both uniform in space and
constant in time, integrate the equation of motion in component form again, assuming
that the particle starts at the origin with zero initial velocity.

Problem 4. A ball on a string.

A ball is on a frictionless table. A string is connected to the ball as shown in the figure.
The ball is started in a circle of radius R with angular velocity ω0. The force exerted on a
string is then increases so that the distance between the hole and the ball decreases and is
a given function of time r(t). Assuming the string stays straight and that it only exerts a
force parallel to its length.

1. Find the velocity of the ball as a function of time.

2. What is polar φ component of the force must be in order for this motion to be possible?
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Extra for Honors

Problem 5. 1990-Spring-CM-U-2.

A uniform rod, of mass m and length 2l, is freely rotated at one end and is initially supported
at the other end in a horizontal position. A particle of mass αm is placed on the rod at the
midpoint. The coefficient of static friction between the particle and the rod is µ. If the
support is suddenly removed:

1. Calculate by what factor the reaction at the hinge is instantaneously reduced?

2. The particle begins to slide when the falling rod makes an angle θ with the horizontal.
Calculate this angle.

[Hint: To do this part, you need both components of the force equation on the mass
αm; plus the torque equation and the equation for the conservation of the energy of
the whole system.]
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Homework 6. Due October 10.

Problem 1. 1991-Spring-CM-U-3.

A uniform sphere with a mass M and radius R is set into rotation with a horizontal angular
velocity ω0. At t = 0, the sphere is placed without bouncing onto a horizontal surface as
shown. There is friction between the sphere and the surface. Initially, the sphere slips, but
after a time T , it rolls without slipping.

1. What is the angular speed of rotation when the sphere finally rolls without slipping at
time T?

2. How much energy is lost by the sphere between t = 0 and t = T?

3. Show that amount of energy lost is equal to the work done against friction causing the
sphere to roll without slipping?

Problem 2. 1993-Fall-CM-U-2.

A “Yo-Yo” (inner and outer radii r and R) has mass M and moment of inertia about its
symmetry axis Mk2.

1. The Yo-Yo is attached to a wall by a massless string and located on the slope as shown
in Fig. a). The coefficient of static friction between the slope and Yo-Yo is µ. Find the
largest angle θ before the Yo-Yo starts moving down.

2. Now, consider Yo-Yo which is falling down as shown in Fig. b). Find the ratio of its
translational and rotational kinetic energies.
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Problem 3. 1994-Spring-CM-U-3

A wire has the shape of a hyperbola, y = c/x, c > 0. A small bead of mass m can slide
without friction on the wire. The bead starts at rest from a height h as shown in the figure

1. Find the velocity vector ~v of the bead as a function of x.

2. Find the force ~F that the bead exerts on the wire as a function of x.

Problem 4. 1996-Fall-CM-U-1

Two pucks, each of mass m, are connected by a massless string of length 2L as illustrated
below. The pucks lie on a horizontal, frictionless sheet of ice. The string is initially straight
(i.e., θ = 90o). A constant, horizontal force F is applied to the middle of the string in a
direction perpendicular to the line joining the pucks. When the pucks collide, they stick
together. How much mechanical energy is lost in the collision?

Extra for Honors

Problem 5. 1994-Spring-CM-U-4

A person wants to hold up a large object of mass M by exerting a force F on a massless rope.
The rope is wrapped around a fixed pole of radius R. The coefficient of friction between the
rope and the pole is µ. If the rope makes n+1/2 turns around the pole, what is the maximum
weight the person can support?
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Homework 7. Due October 17.

Problem 1. Kepler orbits.

The shape of the Kepler’s orbits (bounded and unbounded) is defined by its eccentricity ε.
Find the shape (its equation in the Cartesian coordinates) for

1. ε = 0.

2. 0 < ε < 1.

3. ε = 1. What is the energy E of the body?

4. ε > 1.

Problem 2. Scattering.

A comet is approaching the sun. Its velocity at infinity was v0. The impact parameter at
infinity was d. Find the angle of deflection θ.

Problem 3. 1990-Fall-CM-U-2.jpg

An artificial Earth satellite is initially orbiting the earth in a circular orbit of radius R0. At
a certain instant, its rocket fires for a negligibly short period of time. This firing accelerates
the satellite in the direction of motion and increases its velocity by a factor of α. The change
of satellite mass due to the burning of fuel can be considered negligible.

1. Let E0 and E denote the total energy of the satellite before and after the firing of the
rocket. Find E solely in terms of E0 and α.

2. For α > αes the satellite will escape from earth. What is αes?

3. For α < αes the orbit will be elliptical. For this case, find the maximum distance
between the satellite and the center of the earth, Rmax, in terms of R0 and α.
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Problem 4. 1993-Fall-CM-U-1

A satellite of mass m is traveling at speed v0 in a circular orbit of radius r0 under the
gravitational force of a fixed mass M at point O. At a certain point Q in the orbit (see
the figure below) the direction of motion of the satellite is suddenly changed by an angle α
without any change in the magnitude of the velocity. As a result the satellite goes into an
elliptic orbit. Its distance of the closest approach to O (at point P ) is r0/5.

1. What is the speed of the satellite at P , expressed as a multiple of v0?

2. Find the angle α.
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Homework 8. Due October 24.

Problem 1. 1994-Fall-CM-U-4

The most efficient way to transfer a spacecraft from an initial circular orbit at R1 to a larger
circular orbit at R2 is to insert it into an intermediate elliptical orbit with radius R1 at perigee
and R2 at apogee. The following equation relates the semi-major axis a, the total energy of
the system E and the potential energy U(r) = −GMm/r ≡ −k/r for an elliptical orbit of
the spacecraft of mass m about the earth of mass M :

R1 +R2 = 2a =
k

|E|
.

1. Derive the relation between the velocity v and the radius R for a circular orbit.

2. Determine the velocity increase required to inject the spacecraft into the elliptical orbit
as specified by R1 and R2. Let v1 be the velocity in the initial circular orbit and vp be
the velocity at perigee after the first boost so ∆v = vp − v1.

3. Determine the velocity increment required to insert the spacecraft into the second
circular orbit when it reaches apogee at r = R2. In this case let v2 be the velocity in
the final orbit and va be the velocity at apogee so ∆v = v2 − va.

Problem 2. 2000-Spring-CM-U-1

A populated spherical planet, diameter a, is protected from incoming missiles by a repulsive
force field described by the potential energy function:

V (r) = ka(a+ r)e−r/a, r > a/2.

Here k > 0 and r is the distance of the missile from the center of the planet. Neglect all
other forces on the missile.

The initial speed of a missile of mass m relative to the planet is v0 when it is a long way
away, and the missile is aimed in such a way that the closest it would approach the center of
the planet, if it were not deflected at all by the force field or contact with the surface, would
be at an impact parameter b (see the diagram). The missile will not harm the planet if it
does not come into contact with its surface. Therefore, we wish to explore, as a function of
v0 the range of values of b:

0 ≤ b ≤ B

such that the missile will hit the planet.

1. If v0 is less than a certain critical velocity, vc, the missile will not be able to reach the
planet at all, even if b = 0. Determine vc.

2. For missiles with velocity greater than vc find B as a function of v0.
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Problem 3. 2001-Spring-CM-U-1

We wish to extend a flexible wire of length L from a point on the equator of the earth,
reaching into space in a straight line. Its uniform linear density is ρ. Assume the earth is
spherical, radius R, and rotating at Ω radians per second. The acceleration due to gravity at
the surface of the earth is g, which of course decreases according to Newton’s Law of gravity
as the distance from the center of the earth is varied.

Once set in equilibrium with respect to the rotating earth we assume the wire is strong
enough not to break, and is held only at its contact point with the earth’s surface, where the
tension is Ts. There are no other forces on the wire except gravity.

1. Find the tension T of the wire at an arbitrary distance along the wire, assuming that
the wire is long enough so that it will not fall dawn.

2. Find Ts, the tension at the earth’s surface.

3. If the wire is too short it will fall down. Find the critical length, Lc, of the wire in
this case. You may assume for the purpose of solving the equations involved, that the
length, Lc, of the wire is much bigger than the radius of the earth, R.
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Problem 4. Problem 6.2 from Taylor

Problem 5. Extra for Honors

In a disk mill a massive cylinder of radius R and mass M can rotate around its geometrical
axis. After the initial push it freely rotates with angular velocity Ω around vertical axis and
is rolling on the horizontal plate, as shown on the figure. What force the disk applies to the
plate? The disk rolls without slipping.
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Homework 9. Due October 31.

Problem 1. From Classical Mechanics by J. R.Tylor

Problems: 6.5, 6.7, 6.22, 6.24

Problem 2. Extra for Honors (and fun for the rest of us.)

A string of tension T and linear mass density ρ connects two horizontal points distance L
apart from each other. y is the vertical coordinate pointing up, and x the is horizontal
coordinate.

• Write down the functional of potential energy of the string vs. the shape of the string
y(x). Specify the boundary conditions for the function y(x).

• Write down the equation which gives the shape of minimal energy for the string.

• Find the solution of the equation which satisfies the boundary conditions. (Do not try
to solve the transcendental equation for one of the constant. Just write it down.)

• In the case T � ρgL, the shape is approximately given by y ≈ −α
2
x(L− x). Find α.
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Homework 10. Due November 7.

Problem 1. 1991-Fall-CM-U-3.

A small block of mass m is attached near the outer rim of a solid disk of radius a which also
has mass m. The disk rolls without slipping on a horizontal straight line.

1. Find the equation of motion for the angle θ(t) (measured with respect to the vertical
as shown) for all θ.

2. Find the system’s small amplitude oscillation frequency about its stable equilibrium
position.

Problem 2. 1999-Spring-CM-U-2

An infinitely long straight frictionless wire, which passes through the origin of the coordinate
system, is held at a constant angle α with respect to the (vertical) z axis. The wire rotates
about the z axis at constant angular velocity ω, so that it describes the surface of a pair of
right circular cones, centered on the vertical axis, with their common vertices at the origin.
Hence, an arbitrary point P , fixed on the wire, describes a horizontal circle as the wire
rotates. A bead of mass m is free to slide along this wire under the influence of gravity and
without friction. Let r be the distance of the bead from the apex of the cone, positive if
above and negative if below the vertex.

1. Write the Lagrangian for this system in terms of r, α, ω, m, and g.

2. From the Lagrangian, obtain the differential equation of motion for the bead.

3. Solve the equation of motion subject to the initial conditions that r = r0 and dr/dt = 0
at t = 0. Find the condition on r0 which determines whether the bead will rise or fall
on the wire.

4. Use your solution to the equation of motion to find r(t) in the limit that ω goes to zero
and show that it is consistent with simple kinematics.
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Problem 3. From Classical Mechanics by J. R.Tylor

Problems: 7.29

Problem 4. From Classical Mechanics by J. R.Tylor

Problems: 7.31
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Homework 11. Due November 14.

Problem 1. From Classical Mechanics by J. R.Tylor

Problems: 7.33

Problem 2. From Classical Mechanics by J. R.Tylor

Problems: 7.35

Problem 3. From Classical Mechanics by J. R.Tylor

Problems: 7.48

Problem 4. From Classical Mechanics by J. R.Tylor

Problems: 7.49
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Homework 12. Due November 21.

Problem 1. From Classical Mechanics by J. R.Tylor

Problems: 7.34

Problem 2. From Classical Mechanics by J. R.Tylor

Problems: 7.37

Problem 3. From Classical Mechanics by J. R.Tylor

Problems: 7.38

Problem 4. From Classical Mechanics by J. R.Tylor

Problems: 7.41
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Homework 13. Due November 28 (may be December 1).

Problem 1. From Classical Mechanics by J. R.Tylor

Problems: 13.2

Problem 2. From Classical Mechanics by J. R.Tylor

Problems: 13.3

Problem 3. From Classical Mechanics by J. R.Tylor

Problems: 13.5

Problem 4. From Classical Mechanics by J. R.Tylor

Problems: 13.6
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