Exam 3

P208 Fall 2009,
Instructor: Prof. Abanov

11/09/09

<table>
<thead>
<tr>
<th>Name</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(print)</td>
<td></td>
</tr>
</tbody>
</table>

501 Fuller, Melissa	Tues, 2:20-5:10
502 Mahony, James	Tues, 3:55-6:45
503 Chen, Jason	Tues, 4:55-7:45
504 Ferguson, Jim	Tues, 5:55-8:45
505 Zhang, Xiwen	Tues, 6:55-9:55
516 Li, Feng	Thurs, 8:00-10:50
517 Amin, Vivek	Thurs, 9:35-12:25
518 Chen, Jason	Thurs, 11:10-2:00
519 Russell, Charles	Thurs, 12:45-3:35
520 Zhang, Xiwen	Thurs, 2:20-5:10
Problem 1.

Two high current transmission lines carry currents of 25A and 75A in the opposite directions. And are suspended parallel to each other 35cm apart. The vertical posts supporting these wires divide the lines into straight 20m segments.

What magnetic force does each segment exert on the other?_______

Is this force attractive or repulsive?__________

What would happen to the force if we double each current?__________
Problem 2.

An electron $e=1.6 \times 10^{-19} \, C$, $m_e=9.1 \times 10^{-31} \, kg$ is accelerated through a potential difference of $2 \, kV$. It then passes into magnetic field perpendicular to its path, where it moves in a circular arc of diameter $0.36 \, m$.

What is the magnitude of the velocity of the electron in the magnetic field?____

What is the magnitude of the magnetic field?____

What is the frequency of the electron's motion in the magnetic field?____
Problem 3.
A metal bar is at rest on two rails, as shown on the figure. $E = 10\, \text{V}$, $R = 1\, \Omega$, $L = 50\, \text{cm}$, $B = 5\, \text{T}$, and $m = 0.5\, \text{kg}$.

What is the current through the bar right after the switch is closed?_____

What are the direction and magnitude of the magnetic force initially acting on the bar?_____

What is the initial acceleration of the bar?_____
Problem 4.
A planar loop of area \(A = \frac{A}{m^2} \) carries a current \(I = \frac{A}{A} \). The magnetic field \(B = \frac{B}{T} \) is at an angle \(\theta \) with the norm to the loop.

What is magnetic moment of the loop?_____

What is the magnetic force acting on the loop?_____

What torque should be applied to the loop in order to keep it at rest?_____

What torque would be needed if the loop had 100 turns?_______
Problem 5.

A planar loop of area A with N turns is placed in the uniform magnetic field B. The resistance of the loop is R. Initially the plane of the loop is perpendicular to the magnetic field. At time $t=0$ a student starts to rotate the loop with the angular velocity Ω.

What is the emf in the loop at arbitrary time t? ________

What is the current in the loop at arbitrary time t? ______

What power is being dissipated in the loop at arbitrary time t? _______

What is the magnetic moment of the loop at arbitrary time t? _________

What is the torque which the student needs to apply to keep the constant angular velocity at arbitrary time t? _________

What power does the student need to supply to keep the constant angular velocity at arbitrary time t? ________
Problem 6.
A wire with a current \(I=2\text{mA} \) is in the \(x-y \) plane and has the form shown in the figure with dimensions \(R=10\text{cm} \) and \(h=10\text{cm} \). The magnetic field \(B=0.5\text{T} \) is in the \(y-z \) plane at the angle \(\theta=30^\circ \) to the \(z \) axes.

What are the \(x \), \(y \) and \(z \) components of the magnetic force acting on the wire?______

What is the torque of the magnetic force with respect to the \(x \) axis?______
Problem 7.

A metal bar of mass $m=10\text{kg}$ can move along two vertical straight rails which are $L=1\text{m}$ apart from one another. The total friction force between the bar and the rails is proportional to the velocity $F_f=kv$, where $k=0.25\text{Ns/m}$. The resistor $R=3\Omega$ connects the rails. Magnetic field is $B=0.5\text{T}$. After a long time the bar falls with constant velocity.

What is the direction of electric current induced by the motion?(show on the figure)

What is the direction of the magnetic force acting on the bar?(show on the figure)

What is the velocity of the bar?_____

What will be the velocity if we triple the magnetic field?______
Problem 8.
A circuit show on the figure has $E=20\,\text{V}$, $R=2\,\text{k}\Omega$, $L=10\,\text{mH}$.

What is the current right after the switch is closed?

How fast is the current changing right after the switch is closed?

What is the current a long time after the switch is closed?

What is the time constant of this circuit?
Problem 9.
After the switch had been in the position 1 for a very long time, it was switched to the position 2. If \(C=45\text{mF} \), \(L=5\text{mH} \), \(E=20\text{V} \) find:

What is the time derivative of the current right after the switch was switched?_____

What is the frequency of oscillation?________

What is the amplitude of the current oscillations?_______

What is the total energy in the system?_________
Problem 10.

An infinitely long vertical thin solenoid with the cross-section area A goes at angle ϕ through the center of the rectangular horizontal loop of wire with sides a and b. The density of turns in the solenoid is n. There is a time dependent current $I(t)$ in the wire loop.

What is the emf between the ends of the solenoid? ________

How would this emf change if we double the side a? ________

How would this emf change if we double the tilt angle ϕ? ________

What charge would go through the resistor R, if the current in the wire loop was changed from I_i to I_f during the experiment? ________
Extra Problems.

You have until the Final Exam to solve these problems. The first student who solves any gets 10 extra points for this exam. Please, take this sheet with you.

Extra Problem 1.
Find the mutual inductance of two entangled solenoids (see figure).
The cross-section areas of the solenoids are \(A_1 \) and \(A_2 \), and the densities of turns are \(n_1 \) and \(n_2 \).

Extra Problem 2.
A particle of charge \(q \) and mass \(m \) is moving with large velocity \(v \) and impact parameter \(d \) with respect to a small planar loop of wire of resistance \(R \). The area of the loop is \(A \) and the loop and the vector of velocity \(\vec{v} \) lay in the same plane.

Find the final velocity of the charge.

Find direction of the final velocity.

Find the final impact parameter.