Exam 2

P208 Fall 2007, Instructor: Prof. Abanov

10/15/07

Name_		Section	
	(print)		

Your grade:

Problem 1.

A system of capacitors is shown on the figure, $C_1 = 2 \mu F$,

 $C_2 = 3 \, \mu \, F$. Potential difference between points a and b is V=10Volts.

What is the charge Q_1 on capacitor C_1 ?

What is the charge Q_{γ} on capacitor C_{γ} ?

What is the total capacitance of the system?_____

Problem 2.

A system of capacitors is shown on the figure, $C_1 = 6 \mu F$,

 $C_2 = 3 \, \mu \, F$. Potential difference between points a and b is V=10Volts.

What is the total capacitance of the system?_____

What is the charge Q_1 on capacitor C_1 ?_____

What is the charge Q_2 on capacitor C_2 ?

What is the voltage difference V_1 across the capacitor C_1 ?_____

What is the voltage difference V_2 across the capacitor C_2 ?_____

Problem 3.

A battery with $E=10{
m V}$ and internal resistance $r=1{
m k}\,\Omega$ is connected to a simple circuit with a total resistance of $R=9{
m k}\,\Omega$.

What is the current through the battery?_____

What is the potential difference between the battery's terminals?_____

How much power does the battery supply to the simple circuit?_____

How much power dissipates inside the battery?_____

Problem 4.

In the circuit shown in the picture $E=10{\rm V}$, $r=1{\rm k}\,\Omega$, $R_1=2{\rm k}\,\Omega$, and $R_2=R_3=R_4=3{\rm k}\,\Omega$.

What is the current at point a of the circuit?_____

What is the potential difference between points a and b?_____

What is the potential difference between points b and d?_____

What is the the current at point c?_____

What is the potential difference between points c and b?_____

Problem 5.

In the circuit shown in the figure $~E_1=28{\rm V}$, $~R_2=6\,\Omega$, $~R_3=3\,\Omega$, $~I_2=4{\rm A}$, and $~I_3=6{\rm A}$ (directions of $~I_2$ and $~I_3$ are shown)

What is the magnitude and direction (show in the figure) of the current I_1 ?_____

What is the value of the resistor R_1 ?_____

What is E_2 ?____

Problem 6.

In the circuit shown in the figure $E=10{\rm V}$, $r=6{\rm k}\,\Omega$, $R=4{\rm k}\,\Omega$, and $C=4\,\mu\,F$. Initially the capacitor is uncharged. At the moment t_0 the switch is closed.

What is the current in point a immediately after t_0 ?_____

What is the current in point a after a very long time?

What is the charge on the capacitor C long time after t_0 ?_____

Problem 7.

A wire with a current $I=2\mathrm{mA}$ has the form shown in the figure with dimensions $L=10\mathrm{cm}$ and h unknown. It was placed in the magnetic field $B=0.5\mathrm{T}$ pointing out h of the paper.

h I x

What is x component of the force acting on the wire?____

What is y component of the force acting on the wire?_____

Problem 8.

A planar loop of area $A=0.05\mathrm{m}^2$ carries a current $I=1\mathrm{A}$. The magnetic field $B=0.5\mathrm{T}$ is at angle $45\,^\circ$ with the norm to the loop.

What is magnetic moment of the loop?_____

What torque should be applied to the loop in order to keep it at rest?_____

What torque would be needed if the loop had 100 turns?

Problem 9.

An electron $e=1.6 \times 10^{-19} C$, $m_e=9.1 \times 10^{-31} kg$ is accelerated through a potential difference of $2 {\rm kV}$. It then passes into magnetic field perpendicular to its path, where it moves in a circular arc of diameter $0.36 {\rm m}$

What is the magnitude of the velocity of the electron in magnetic field?_____

What is the magnitude of the magnetic field?_____

What is the frequency of he electron's motion in the magnetic field?_____

Problem 10.

In the circuit shown on the figure $~R_1{=}2\,\Omega$, $~R_2{=}6\,\Omega$, and $~R_3{=}5\,\Omega$.

What the resistance of the resistor R_4 must be for the potential difference between the points a and b to be 0?_____

