Exam 3

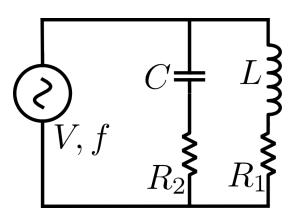
P202 Spring 2009, Instructor: Prof. Abanov

04/02/09

Name		Section			
-	(print)				

517 Labs at 12:40-03:30 pm, TA: Wenlong Yang

518 Labs at 01:50-04:40 pm, TA: Jianping Xiao


519 Labs at 03:00-05:50 pm, TA: Kyle Damborsky

Your grade:
Problem 1.
The series RCL circuit is given on the figure. The source supplies alternating voltage with amplitude $V=3{\rm V}$, and frequency $f=150{\rm Hz}$. The capacitance of the capacitor is $C=2.5{\rm mF}$ and inductance of the inductor is $L=10{\rm mH}$ and the resistance $R=10\Omega$.
What is the amplitude of the current in the circuit?
What is the phase angle between the current and the voltage?
What average power is supplied by the source?
What average power is dissipating on the capacitor and inductor?
What average power is dissipating on the resistor?
What is the resonance frequency of the circuit?

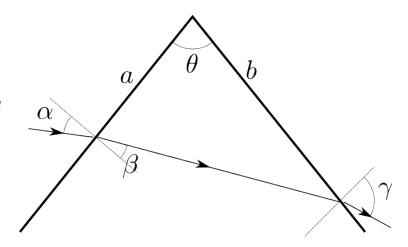
Problem 2.

In the circuit shown in the drawing, the generator supplies the same amount of rms voltage $V_{\rm rms}\!=\!15{\rm V}$ at either very small or very large frequencies.

The resistance of the resistors are $R_1 = 5 \mathrm{k} \, \Omega$, $R_2 = 3 \mathrm{k} \, \Omega$.

What current is supplied by the source at very small frequency?_____

What power is supplied by the source at very small frequency?_____

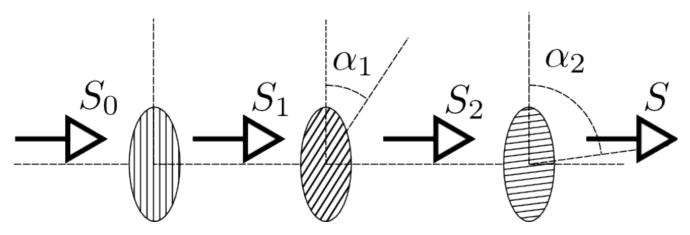

What current is supplied by the source at very large frequency?_____

What power is supplied by the source at very large frequency?_____

Problem 3. A radio station broadcasts at a frequency $630 \rm kHz$. At some point the magnetic field amplitude of the electromagnetic wave is $6x10^{-11}T$.
What is the wavelength of the electromagnetic wave?
What is the angular frequency of the electromagnetic wave?
What is the electric field magnitude of the electromagnetic wave?
What is the energy density of the electromagnetic wave at this point?

Problem 4.

A ray of light enters a glass angle ($\theta\!=\!60\,^\circ$) with $n_g\!=\!1.33$ from the side **a** at the angle $\alpha\!=\!41.68\,^\circ$



What is angle β ?_____

What is the angle γ ?____

What must $\ \alpha \$ be in order for the ray not to go through the side b?

Problem 5.

An unpolarized beam of light is incident upon a group of three polarizing sheets which are arranged so that the transmission axis of the sheets are rotated by $\alpha_1 = 30^{\circ}$ and $\alpha_2 = 90^{\circ}$ with respect to the vertical

What fraction of the incident intensity $\,S_0\,\,$ passes through the first polarizer? ____

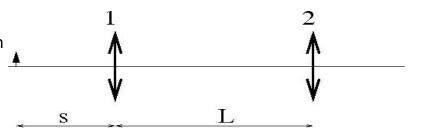
What fraction of the incident intensity S_0 passes through the second polarizer?_____

What fraction of the incident intensity S_0 is transmitted? _____

Problem 6.

An object is placed 30.0 cm from a concave spherical mirror with radius of curvature 80.0 cm.
Is the image virtual or real?
Is the image inverted?
What is the focal length of the mirror?
What is the distance from the image to the mirror?

What is the magnification?_____


P	ro	h	lem	7.

A diver is under water ($n=1.33$) in a sunny day. He looks up and sees a div	ving
board which appears to be 3m above the water.	

What is the real hight of the diving board above the water?
What is the angle of internal reflection?
If the diver is 2m under water what is the radius of the bright circle he sees when he looks up?

Problem 8.

The object is s=15cm from the first lens. The distance between lenses is L=20cm. The focal length of the first lens is f_1 =10cm and of the second lens it is f_2 =5cm.

What is the distance between the first lens and the first image?_____

What is the distance between the second lens and the final image?____

What is the magnification of the first lens?

What is the magnification of the second lens?_____

What is the final magnification?

Is the final image virtual?_____

Is the final image inverted?_____

Pro	b	lem	9.
-----	---	-----	----

A telescope v	vith the	angular	magnification	100	has a	n eye	piece	lens	with	focal
length 5cm.										

What is the focal length of the objective?
What is the the distance between objective lens and the eyepiece?

P	ro	h	lem	10)_

A far sighted person has a near point at 2m. (A healthy person has a near poin 25cm)
Does he need convergent or divergent lenses for his glasses?
What should be the focal length of his glasses?

What is the power of those lenses?_____

at