# Exam 1

P202 Spring 2009, Instructor: Prof. Abanov

02/05/09

| Name_ |         | Section |  |
|-------|---------|---------|--|
|       | (print) |         |  |

# Your grade:

## Problem 1.

Charges  $Q_1 = +11 \mu \, C$  and  $Q_2 = -11 \mu \, C$  are at distance  $R = 1 \mathrm{m}$  from each other. The mass of charge  $Q_1$  is  $m = 1 \mathrm{kg}$  .



What is the magnitude and the direction of the force which acts on the charge  $Q_1$  ? \_\_\_\_\_(show direction on the figure)

What is velocity the charge  $\ Q_1 \$  must have in order to stay in orbit of radius  $\ R \$ ?

How should the velocity be changed in order for the orbit to have radius 4R ?

#### Problem 2.

Four charges Q1, Q2, Q3, and Q4 are positioned in the corners of a rhombus with sides measures a=0.5m and angle  $\Theta$ =60°. Q1=+2.0mC, Q4=+2.0mC, and Q2= +1.0mC is positive.



What is the magnitude and direction of the force with which charge Q1 acts on charge Q2?\_\_\_\_\_ (show direction on the figure)

What is the magnitude and direction of the force with which charge Q4 acts on charge Q2?\_\_\_\_\_ (show direction on the figure)

if Q3 is zero what is the magnitude and direction of the total force which acts on charge Q2?\_\_\_\_\_ (show direction on the figure)

What does Q3 have to be so that the total force on Q2 to be zero?\_\_\_\_\_

What will be the total force acting on Q2 if we double Q3?\_\_\_\_\_

#### Problem 3.

Three charges  $\,Q_1\,$ ,  $\,Q_2\,$ , and  $\,Q_3\,$  are positioned in the corners of a triangle whose side measures a=0.5m and angle  $\,\theta\!=\!60\,^\circ\,$   $\,Q_1\!=\!Q_2\!=\!+2.0\mathrm{mC}\,$  and  $\,Q_3\!=\!+1.0\mathrm{mC}\,$ .



What is the magnitude and direction of the force with which charge  $\,Q_1\,$  acts on charge  $\,Q_3\,$  ?\_\_\_\_\_ (show direction on the figure)

What is the magnitude and direction of the force with which charge  $Q_2$  acts on charge  $Q_3$ ?\_\_\_\_\_ (show direction on the figure)

What is the magnitude and direction of the total force which acts on charge  $Q_3$  ? \_\_\_\_\_ (show direction on the figure)

What would be the magnitude and direction of the total force which acted on charge  $Q_3$ , if charge  $Q_2$ =-2.0mC ?\_\_\_\_\_ (show direction on the figure)

#### Problem 4.

A solid, conducting sphere of radius a =4.0cm carries an excess charge of  $Q=+8\,\mu\,C$ . This sphere is located at the center of a hollow, conducting sphere with an inner radius of b=12.0cm and an outer radius of c=14.0cm as shown. The hollow sphere carries a total excess charge of  $q=-6\,\mu\,C$ .

What is the magnitude and direction of the electric field at a distance 3.8cm from the center?\_\_\_\_



What is the magnitude and direction of the electric field at a distance 5cm from the center?\_\_\_\_\_

What is the magnitude and direction of the electric field at a distance 13cm from the center?

What is the magnitude and direction of the electric field at a distance 15cm from the center?\_\_\_\_\_

What is the total charge at the outer surface of the hollow sphere?\_\_\_\_\_

# Problem 5.

| Four protons are initially at rest in the corners of a square of side $a\!=\!0.8\mathrm{nm}$ . All for released simultaneously. | ur are |
|---------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                                 |        |
| What is the maximum speed each will ever reach?                                                                                 |        |
| When (at what distance) does this speed occur?                                                                                  |        |
| What is the maximum acceleration each will achieve?                                                                             |        |
| When (at what distance) does this acceleration occur?                                                                           |        |

#### Problem 6.

Three charges  $\,Q_1\,$ ,  $\,Q_2\,$ , and  $\,Q_3\,$  are positioned in the corners of a triangle whose side measures a=0.5m and angle  $\,\theta\!=\!60\,^\circ\,$   $\,Q_1\!=\!Q_2\!=\!+2.0\mathrm{mC}\,$  and  $\,Q_3\!=\!+1.0\mathrm{mC}\,$ . The mass of charge  $\,Q_3\,$  is  $\,M\!=\!10\mathrm{g}\,$ . At initial time the charge  $\,Q_3\,$  is released.



What is initial acceleration of the charge  $Q_3$  ?\_\_\_\_\_

What is the velocity of the charge  $Q_3$  at infinity?\_\_\_\_\_

What would the velocity at infinity be if charge  $\,Q_3\,$  started from midpoint between charges  $\,Q_1\,$  and  $\,Q_2\,$  ?\_\_\_\_\_

# Problem 7.

The plates of the parallel-plate capacitor are d=1mm apart, and each carries a charge of magnitude Q= $8.0\mu$ C. The capacitor is connected to the V=1000Volts battery

| What is the magnitude of the electric field between the plates?                    |
|------------------------------------------------------------------------------------|
| What is the magnitude of the electric field outside?                               |
| What is the area of each plate?                                                    |
| What is the capacitance?                                                           |
| What is the energy stored in the capacitor?                                        |
| What will be the charge on the plates if we double the distance between the plates |

# **Problem 8.** (spherical capacitor)

A solid, conducting sphere of radius  $a=3.5 \, \mathrm{cm}$  is located at the center of a hollow, conducting sphere with an inner radius of  $b=10.0 \, \mathrm{cm}$  and an outer radius of  $c=12.0 \, \mathrm{cm}$  as shown. The charge of the solid sphere is  $Q=-6 \, \mu C$ . The hollow sphere carries a total excess charge of  $q=+6 \, \mu C$ .



What is the potential difference between the solid and the hollow spheres?\_\_\_\_\_

What is the capacitance of this system of conductors?\_\_\_\_\_

How the capacitance changes if we double the radius c?\_\_\_\_\_

#### Problem 9.



A parallel plate capacitor with the length of the plates L=10cm is set up horizontally and has a distance between plates d=1cm and the potential difference between the plates V=1000Volts. A small object of charge  $Q=2\,\mu\,C$  and mass m=1g enters the capacitor with horizontal velocity v=20m/s. Neglect the gravitational force.

What is the magnitude and the direction of the electric field in between the plates?

What electrostatic force is is acting on the object?\_\_\_\_\_

What is the magnitude of the object's velocity when it leaves the capacitor?\_\_\_\_\_

What is the direction of the object's velocity when it leaves the capacitor?\_\_\_\_\_

### Problem 10.

An insulating sphere of radius R is uniformly charged throughout its volume. The total charge of the sphere is Q. Find the electric field at distance r from the center of the sphere. (Volume of a sphere of radius a is  $\frac{4}{3}\pi a^3$ )

If r>R \_\_\_\_\_

if r<R \_\_\_\_\_