Exam 4

P201 Fall 2006,

Instructor: Prof. Abanov

11/28/06

Name Section

(print in big block letters)

Your grade:
Problem 1.
One end of a horizontal rope is attached to a prong of an electrically driven tuning fork that vibrates at 200 Hz. The other end passes over a pulley and supports a 3.00 kg mass. The linear mass density of the rope is 5.50×10^{-2} kg/m.
What is the speed of a transverse wave on the rope?
What is the wavelength?
What would the speed of the transverse wave be if the mass at the end were doubled?
What would the wavelength be in this case?
Problem 2.
A wire with mass $60.0~g$ is stretched so that its ends are tied down at points $86.0~cm$ apart. The wire vibrates in its fundamental mode with frequency $80.0~Hz$ and with an amplitude of $0.800~cm$ at the antinodes.
What is the wavelength of the fundamental mode?
What is the speed of the wave?
What is the tension of the wire?
What are the frequency of the second overtone (harmonic)?

Pro	bl	em	3.

A glass flask whose volume is $1000.45~\rm cm^3$ at $T_i = 0~\rm C$ is completely filled with mercury at this temperature. When flask and mercury are warmed to $T_f = 55.2~\rm C$, $9.00~\rm cm^3$ of mercury overflow. (The coefficient of volume expansion of the mercury is $18 \times 10^{-5}~\rm K^{-1}$)

What is the volume of the mercury at the final temperature?_____

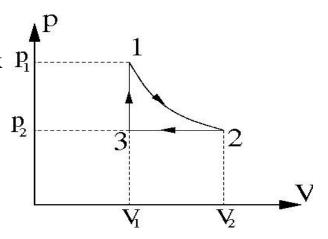
What is the coefficient of volume expansion of glass?_____

How much more mercury will overflow if we increase the temperature to $T_f = 65 \,^{\circ} C$?_____

Problem 4.

The mixture of 1kg of ice and 1kg of water at equilibrium at normal pressure is heated to $T_f = 10\,^{\circ}C$. The latent heat of ice is $3.34 \times 10^5 J/kg$, the specific heat capacity of water is $4.19 \times 10^3 J/kg \cdot K$.

What amount of heat have been supplied to the system?_____


How much more heat we need to supply in order to vaporize the water? What will be the temperature of the resulting vapor? (the heat of vaporization is $2.26 \times 10^6 J/kg$)_______,

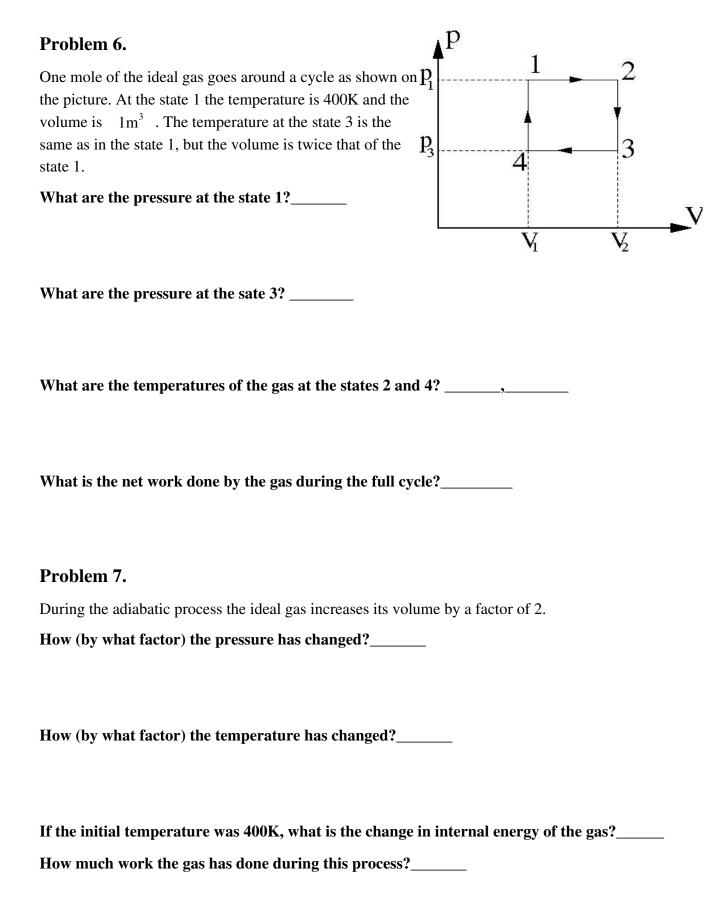
Problem 5.

One mole of an ideal gas has initial temperature 400K $\ P_1$ and initial volume $\ 1m^3$ (1). During an isothermal process its volume doubled (2). Then by an isobaric process it was brought to the initial $\ P_2$

volume (3). Finally, increasing pressure at constant volume the gas was brought to the initial state.

What is the initial pressure p_1 ?_____

What are the volume V_2 , the pressure P_2 and the temperature T_2 at the state (2)?_____,____


What are the volume $\ V_3$, the pressure $\ p_3$ and the temperature $\ T_3$ at the state (3)?_____,___

How much work had to be done on the gas during the process 2-3?_____

How much internal energy of the gas has changed during the process 2-3?_____

How much heat had to be supplied to the gas during the process 2-3?_____

How much heat had to be supplied to the gas during the process 3-1?_____

Problem 8. p
One mole of an ideal gas goes around the Carnot cycle. The temperature of the hot heat bath is T_H =400K, the temperature of the cold bath is T_C =300K. During the process 1-2 the
gas received 4J of heat.
What work is done by the gas during the process 2-3?
What work is done by the gas during the process 4-1?
How much work has been done by the gas during the process 1-2?
How much heat the gas transfered to the cold bath during the process 3-4?
How much work the gas has done during the process 3-4?
What is the thermal efficiency of this heat engine?
Problem 9.

For the gas and the cycle from the Problem 8.

What is the net change of entropy during the cycle? Why?_____

Problem 10.			
The latent heat of ice is $3.34 \times 10^5 J/kg$. The specific heat capacity of water is $4.19 \times 10^3 J/kg \cdot K$			
What is the difference in entropy of one kilogram of ice and one kilogram of water at $0 {}^{\circ}C$?			

Approximately, how much the entropy of the water changes when its temperature increases from $50\,^{\circ}C$ to $55\,^{\circ}C$?_____